B034486

Lifford Common

Generic Quantitative Risk Assessment (GQRA)

Version 1 May 2022

Tetra Tech Limited 1 Locksley Business Park, Montgomery Road, Belfast, BT6 9UP

02890 706000

tetratech.com

Generic Quantitative Risk Assessment (GQRA)

B034486

May 2022

PRESENTED TO

PRESENTED BY

McAdam Design Ltd

Tetra Tech Europe (NI) Ltd 02890 706000 tetratech.com

Prepared by:

Name Jane Baird Title Senior Geo-Environmental Consultant Date 17/05/2022

Reviewed by:

Unsens brek

Name Patrick Higgins Title Associate Consultant Date 17/05/2022

Authorised by:

Stuart Martin Associate Director Date 17/05/2022

EXECUTIVE SUMMARY

The Site	Tetra Tech Environment Planning Transport (NI) Limited was instructed by McAdam Design Ltd to complete a Generic Quantitative Risk Assessment (GQRA) for a proposed mixed-use development on agricultural land at Lifford Common.
Site Description	The site is located off Letterkenny Road and is comprised of undeveloped agricultural land. The site is surrounded by mix of agricultural, commercial and residential land use. The topography of the site falls c.18m towards the north.
PRA Summary	Previously a Preliminary Risk Assessment (ref: P2564-1, dated January 2022) was completed by MCL Consulting Ltd which identified numerous potential pollutant linkages identified at the site associated with the historical railway on site, alluvium in the north, adjacent filling station (Applegreen Service Station), made ground and radon.
Site Investigation Data	A ground investigation was undertaken on 17 th February 2022 and comprised three boreholes advanced to a maximum depth of 5.0m bgl and eight trial pits advanced to a maximum depth of 2.0m bgl. All three boreholes were installed as combined groundwater and ground gas monitoring wells. In total, 9 no. soil samples and 3 no. groundwater samples were obtained and analysed for a range of organic and inorganic determinants. Ground gas monitoring has been undertaken on 2 no. occasions between 25 th February and 4 th March 2022.
Generic Quantitative Risk assessment	 On completion of the GQRA and an assessment of the soils, groundwater and ground gas regime the following conclusions were drawn: Reported contaminant concentrations detected within the soils are considered to pose a low risk to human health, surface water and groundwater receptors The site's ground gas regime has been assessed as CS1 – very low risk Radon on the site is indicated to be around 9.72%, and consideration of Radon ingress should be taken into account during the building design stage.
Conclusions & Recommendations	Following completion of the GQRA the site is considered to present an overall low to moderate risk to the proposed future development and mitigation measures are not required. Short term exposure risks to construction workers can be effectively managed via the adoption of appropriate Health and Safety protocols. It is recommended that off-site removal of soils should be undertaken in accordance with EU waste legislation. Should any unexpected contamination be encountered during the construction phase then works should cease and the consultant conferred to advise.

TABLE OF CONTENTS

1.1 Instruction	1
1.2 Brief	1
1.3 Legal context	1
1.4 Terms and Conditions	2
3.0 GENERIC QUANTITATIVE RISK ASSESSMENT	4
3.1 Site Investigation	4
3.1.1 Monitoring Well Installation	5
3.2 Soil Sampling	5
3.3 Water Sampling	5
3.4 Ground Gas Monitoring	5
3.5 Ground Conditions Encountered	5
3.5.1 Groundwater	6
3.6 Contamination Assessment Methodology	6
3.6.1 Water	7
3.6.2 Soil	7
3.6.3 Ground Gas	8
3.7 Soil Assessment	8
3.7.1 Heavy Metals	8
3.7.2 Organics	8
3.7.3 Inorganics	9
3.7.4 Asbestos	9
3.7.5 Summary of Soils Assessment	9
3.8 Controlled Waters Assessment	9
3.8.1 Metals	9
3.8.2 Organic	9
3.8.3 Inorganics	10
3.9 Controlled waters Assessment – Human Health	10
3.10 Controlled waters Assessment Summary	10
3.11 Ground Gas Assessment	10
3.11.1 Meteorological Conditions	
3.11.2 Site Gas Concentrations	11
3.11.3 Ground Gas Risk Discussion	11

3.12 Updated Conceptual Site Model (CSM)	
3.12.1 Sources	
3.12.2 Pathway – Receptor Linkages	
4.0 CONCLUSIONS & RECOMMENDATIONS	
4.1 Contractor Worker Health and Safety	
4.2 Off-site Removal of soil	
4.3 Unexpected Contamination	

LIST OF TABLES

Table 1 – Investigation Rationale	4
Table 2 - Encountered Geological Conditions	
Table 3 – Groundwater Level Data Summary	
Table 4 - Summary of Gas Monitoring Results	
Table 5 - Updated Conceptual Site Model	
	•••

LIST OF FIGURES

Figure 1- Site Location Plan Figure 2- Proposed Development Plan Figure 3- Site Investigation Plan

APPENDICES

- APPENDIX B PHOTOGRAPHIC LOG
- APPENDIX C BOREHOLE AND TRIAL PIT LOGS

APPENDIX D - SOIL AND WATER ASSESSMENT CRITERIA

- APPENDIX E GAS ASSESSMENT CRITERIA
- APPENDIX F SOIL AND WATER SCREENING ASSESSMENT
- APPENDIX G GROUND GAS MONITORING DATA AND SCREENING ASSESSMENT
- **APPENDIX H LABORATORY TEST CERTIFICATES**

1.0 INTRODUCTION

1.1 INSTRUCTION

Tetra Tech Consulting (NI) Limited was instructed by McAdam Design Ltd to conduct a Generic Quantitative Risk Assessment (GQRA) to appropriately characterise current site conditions and associated potential risks based on the proposed multi-use park development on lands located at Lifford Common in Donegal, Ireland (Irish Grid Reference: H 33151 98950).

A site location plan is included at Figure 1.

1.2 BRIEF

The report has been prepared to support the proposed development of site with a multi-use park as shown on Figure 2. Proposals include for the development of a roadway infrastructure connecting to 2 no. pitches varying in size from 60m x 40m to 105m x 70m which will be located in the northern portion of site. A foul pumping station is also proposed at the intersection of the roadway infrastructure.

This report follows a Preliminary Risk Assessment (PRA) (ref: P2564-1, dated January 2022) undertaken by MCL Consulting Ltd. The PRA identified potential pollutant links (PPLs) which may be present at the site. The objective of this report is to further investigate the PPLs to provide a Generic Quantitative Contaminated Land Risk Assessment (GQRA) in the context of the abovementioned development proposals. Where pollutant linkages have been identified to required remediation an outline remediation options has been provided.

1.3 LEGAL CONTEXT

The work, as presented in this report, has been completed in accordance with best practice guidance documents including "Guidance On The Management Of Contaminated Land And Groundwater At EPA Licensed Sites, 2013 and the "EA (UK) Guidance on Land Contamination Risk Assessment" (EA UK, 2020). The latter piece of guidance is specifically relevant to land contamination in the United Kingdom (UK), however it is relevant, as the EPA's framework has been broadly based on it.

The framework approach identifies three stages as outlined below:

Stage 1 - Site Investigation and Assessment including

- Preliminary Site Assessment
- Detailed Site Investigation
- Quantitative Risk Assessment

Stage 2 - Corrective Action Feasibility and Design

TETRA TECH

- Outline Corrective Action Strategy (Objectives)
- Feasibility study and outline design
- Detailed design
- Final Strategy and implementation plan

Stage 3 - Corrective Action Implementation and Aftercare

- Enabling works
- Corrective Action Implementation and Verification
- Aftercare

The assessment presented in this report presents the results of a site investigation and generic quantitative risk assessment in accordance with Stage 1 above.

The risk assessment process is underpinned by the establishment and continual refinement of a Conceptual Site Model (CSM). A CSM describes the potential sources of contamination at a site, the contaminant migration pathways it may follow and the receptors that could be or are being impacted. When all three are present i.e. source, pathway and receptor, then a potential pollutant linkage is present, requiring characterisation and assessment in order to determine whether remedial works are needed to adequately address any potentially unacceptable risks.

1.4 TERMS AND CONDITIONS

Attention is drawn to the report conditions, included in Appendix A, and the terms and conditions of the engagement as detailed in our accepted proposal.

2.0 SUMMARY OF PRELIMINARY RISK ASSESSMENT

A review of a Preliminary Risk Assessment (PRA) (ref: P2564-1, dated January 2022) completed for the site by MCL Consulting Ltd has been undertaken by TT and a summary of which provided below.

The preliminary risk assessment collated information from a wide range of sources including geological and hydrogeological mapping; historical mapping; EPA Ireland; GSI (Geological Survey Ireland); FloodInfo Ireland; and a site walkover. A summary of the PRA findings relevant to the site are presented below.

- Site Description The site is currently occupied by agricultural land (5 no. fields) northwest of Lifford, County Donegal. Surrounding lands are characterised as largely agricultural, with mixed residential and commercial land uses to the south (including Applegreen Service Station) and southwest.
- Site Environment The site is shown to be underlain by superficial deposits consisting of glacial till (derived from metamorphic rocks) across the majority of site and an outcrop of alluvium in the northern extent. Bedrock underlying the superficial deposits is shown to be of Schist and grit with thin marble units, as part of the Lough Foyle Succession. Groundwater vulnerability is largely classified as moderate, with an area in the northwest not classified as denoted as not available on mapping. Potential superficial aquifers are not associated with Glacial Till on site. The bedrock aquifer on site is assigned an aquifer code of 'Pl', characterised as a Poor Aquifer, which is generally unproductive except for Local Zones. The aquifer is located within the Lough Foyle Succession with Schist and grit with thin marble units. The nearest watercourse recorded is along the western boundary named 'Lifford Common' and the northern boundary named the 'Gort 01'. There are no groundwater abstractions located within 500m radius if the site.
- Site History A review of available historical mapping from 1837 shows the site was agricultural fields with
 a farm dwelling in the northwest corner. The farm dwellings are shown present in mapping dated 1904
 along with a railway line transecting the northern boundary of site, however both no longer exist by 2010.
 Applegreen Service Station to the south of site was constructed between 2013 and 2016.

From the gathered information the potential sources, receptors and pathways were reviewed with regard to the proposed development. An initial conceptual site model was produced outlining numerous potential pollutant linkages identified at the site associated with the historical railway on site, alluvium in the north, adjacent filling station (Applegreen Service Station), made ground and radon.

3.0 GENERIC QUANTITATIVE RISK ASSESSMENT

The purpose of a Generic Quantitative Risk Assessment (GQRA) is to refine the conceptual model developed following the preliminary risk assessment. If the GQRA identifies potentially unacceptable risks then it may be necessary to carry out remedial works or further assessment in the form of a DQRA, which in turn may result in remedial works being recommended.

3.1 SITE INVESTIGATION

Based on the outline conceptual model and possible pollutant linkages identified a ground investigation was undertaken on 17th February 2022 with subsequent monitoring undertaken between 25th February 2022 and 4th March 2022 and comprised the following:

- Three boreholes advanced by dynamic sampling drilling to a maximum depth of 5.0m bgl;
- Eight trial pits advanced by 13T excavator to a maximum depth of 2.0m bgl;
- Soil sampling and laboratory testing of samples obtained from boreholes;
- Groundwater sampling and laboratory testing of samples obtained from boreholes; and,
- Ground gas monitoring on 2 no. occasions from boreholes installed with monitoring wells.

The exploratory hole locations are presented at Figure 4 and an investigation rationale is detailed in Table 1 below.

Location	Investigation Rationale
BH1	Targeted location to investigate former railway line and alluvium in the north of the site. To allow collection of samples for contamination testing. Installation of gas and groundwater monitoring well. Determine groundwater presence and subsequent flow direction.
BH2 & BH3	Targeted location to investigate adjacent filling station to the south of the site. To allow collection of samples for contamination testing. Installation of gas and groundwater monitoring well. Determine groundwater presence and subsequent flow direction.
TP1, TP3, TP4, TP5, TP6, TP7 & TP8	To assess shallow ground conditions and confirm composition of made ground (if present) To allow collection of samples for contamination testing. Nominal 50m spacing depending on access, but no formal grid pattern.
TP2	To assess shallow ground conditions and confirm composition of made ground (if present) from historical farm dwelling To allow collection of samples for contamination testing.

Table 1 – Investigation Rationale

3.1.1 Monitoring Well Installation

In total three boreholes (BH1, BH2 & BH3) were installed as permanent groundwater and ground gas monitoring wells. The wells were constructed with 50mm-diameter HDPE pipe and finished with heavy duty metal flush covers. The construction details for the installed wells are presented in the Borehole Logs in Appendix C.

3.2 SOIL SAMPLING

A total of 9 no. representative soil samples were collected during the intrusive works for submission to an independent UKAS accredited laboratory for analysis. Samples were selected at intervals to best characterise made ground and underlying subsoils and/or where there suspected (visual/olfactory evidence) contamination was noted. Selected soil samples were analysed for the following parameters;

- Heavy metals;
- Total phenols;
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Speciated Total Petroleum Hydrocarbons (TPH-CWG incl. BTEX); and,
- Several inorganic parameters inc. asbestos.

3.3 WATER SAMPLING

In total, 3 no. groundwater samples from monitoring wells BH1, BH2 and BH3 were collected on 4th March 2022. Samples were submitted for the following suites of analysis:

- Heavy metals.
- Total phenols;
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Speciated Total Petroleum Hydrocarbons (TPH-CWG incl. BTEX); and,
- Several Inorganic Parameters.

3.4 GROUND GAS MONITORING

The installed borehole locations were monitored for ground gas on 2 no. occasions between 25th February 2022 and 4th March 2022. Measurements of flow rate, methane (CH₄), carbon dioxide (CO₂), oxygen (O₂) carbon monoxide (CO) and hydrogen sulphide (H₂S) concentrations were taken using a GA5000 Gas Analyser in accordance with CIRIA guidance for a proposed residential development.

3.5 GROUND CONDITIONS ENCOUNTERED

A summary of geological conditions encountered in all boreholes is presented in Table 2.

Geology	Details	Top (mbgl) (min – max)	Base (mbgl) (min – max)	Thickness (m) (min- max)
TOPSOIL	Grass over sandy gravelly silt or clayey sandy silt	0.0	0.10 - 0.40	0.10 - 0.40
ALLUVIUM	Organic silt or organic silt with seams of sand (BH1)	0.2	>5.0	Not proven
	Silty sandy gravelly clay	0.2	0.5	0.3
GLACIAL TILL	Sandy and/or gravelly silt	0.1 - 0.5	0.4 - 2.3	0.4 – 1.9
	Silty gravelly sand (some locations with cobbles/boulder content)	0.25 - 0.6	>1.7->2.0	Not proven
POSSIBLE WEATHERED BEDROCK	Sandy gravelly silt with frequent cobbles	0.4 - 0.5	>2.3 - >2.7	Not proven

Table 2 - Encountered Geological Conditions

There was no visual or olfactory evidence of contamination noted during the intrusive investigation.

3.5.1 Groundwater

During the intrusive investigation groundwater was not encountered within any of boreholes or trial pits. Subsequent groundwater monitoring (Round 1 - 2) indicated groundwater levels between 0.03m (BH1) and 1.1m bgl (BH3). Table 3 below outlines the groundwater level data recorded.

Table 3 – Groundwater Level Data Summary

Borehole	Round 1	Round 2
location	Standing Water Levels m	bgl (metres below ground level)
BH1	0.05	0.03
BH2	0.36	0.36
BH3	1.1	1.1

3.6 CONTAMINATION ASSESSMENT METHODOLOGY

To assess the human health and environmental risks posed by potential contaminants within the underlying soils and groundwater, Tetra Tech undertook a comparison of laboratory analysis for soil samples using generic assessment criteria. Generic assessment criteria are contaminant concentration values used for comparison purposes to assess the risk associated with contaminant concentrations found on site and are derived using nonsite-specific information.

3.6.1 Water

The results from the groundwater and surface water samples have been assessed in accordance with Freshwater criteria provided in the Water Framework Directive or by direct comparison with the Freshwater Environmental Quality Standards (EQS) in the first instance due to the presence of nearby surface water receptor, the River Foyle. Where EQS are unavailable results will be compared with UK Drinking Water Standards (DWS), WHO (World Health Organisation standards for Drinking Water) or other appropriate guidance values.

A summary of the assessment criteria used, and the method of their derivation is included in Appendix F.

3.6.2 Soil

Following the UK CLEA methodology, generic assessment criteria in the form of CIEH S4UL's and Tetra Tech Threshold Screening Values (TSVs) have been used to assess a risk to human health.

A soil organic matter value of 1% has been used to calculate TSVs using the CLEA v1.07 model for all contaminant which is considered conservative based on reported site-specific soil organic matter concentrations. For each contaminant, threshold screening values (TSVs) have been derived for various land use types. These include:

- Residential with plant uptake (RwP).
- Residential without plant uptake (RwoP).
- Commercial and industrial.
- Public open space (POS) near residential.
- Public open space (park); and,
- Allotments.

Development proposals for the site indicate a mixed used including both playing fields and a fuel pumping station. The Public open space (POS) near residential will be adopted to assess risk to health from contaminants present in soils relevant to their location in the first instance. Where exceedances are reported these will be considered further in the context of the development proposals. A summary of the assessment criteria used, and the method of their derivation is included within the S4UL document¹ however, this cannot be reproduced for inclusion in the report. Where S4UL's are not available Tetra Tech criteria are used, a copy of the source reference material is presented in Appendix F.

¹ The LQM/CIEH S4ULs for Human Health Risk Assessment Authors: Nathanail, C.P.; McCaffrey, C.; Gillett, A.G.; Ogden, R.C. & Nathanail, J.F. Publisher: Land Quality Press, Nottingham Published: 2015

3.6.3 Ground Gas

The CIRIA C665 document provides guidance on the collection of relevant and valid data that will allow an accurate description of soil gases to be made; a rigorous consistent and transparent assessment of the risks posed by soil gas to be undertaken which in conjunction with relevant British Standard Guidance BS8485:2015+A1:2019 (Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings) will allow an appropriate strategy for remedial works to be developed should they be required.

The criteria shown in Appendix F uses both gas concentrations and boreholes flow rates to define a characteristic situation for a site based on limiting borehole gas volume flow for methane and carbon dioxide, called the Gas Screening Value. The Gas Screening Value (litre of gas per hour) = borehole flow rate (I/h) x gas concentration (%). This calculation is carried out for both carbon dioxide and methane, and the worst-case value adopted. The characteristic situation is then determined.

On the basis of the proposed development type the site's ground gas regime will be assessed via the Wilson and Card Methodology considered appropriate for a Situation A type development as described in the CIRIA C665 document.

3.7 SOIL ASSESSMENT

A total of 9 no. soil samples were selected and analysed for a range of the following determinants - metals, speciated PAHs, speciated TPH with BTEX, asbestos ID and several inorganic parameters. The results of the laboratory soil analyses are summarised in Appendix F in which they are compared to the relevant generic assessment criteria (POS near residential) GACs.

A summary of the soil results are compared with the relevant GACs in Appendix F, and the laboratory analysis certificates are presented in Appendix H.

3.7.1 Heavy Metals

A total of 6 no. samples, obtained from depths between 0.5mbgl and 1.0mbgl were analysed for a range of heavy metals. All samples analysed were found to be below the relevant GAC.

3.7.2 Organics

Samples were selected for analysis for a range of organic determinants, including TPH-CWG, PAHs, BTEX and total phenols. The findings of the assessment are as follows:

Total Petroleum Hydrocarbons (TPHs)

All 9 no. samples analysed individual aromatic and aliphatic TPH fractions reported concentrations largely below the laboratory limit of detection and below the POS near residential GAC.

Polycyclic Aromatic Hydrocarbons (PAHs)

TE TETRA TECH

All 9 no. samples analysed for PAHs reported concentrations below the POS near residential GACs.

BTEX and Phenols

The reported concentrations for BTEX and Phenols for the samples analysed were all below the laboratory limit of detection and POS near residential GACs.

3.7.3 Inorganics

A total of 8 no. samples were analysed for inorganics (including free cyanide and pH) and did not exceed the POS near residential GACs where available. The pH of soils was generally reported within the neutral range pH5 to pH9, with the exception of BH1 at 0.50mbgl which report a pH of 4.52 indicating slightly acidic conditions.

3.7.4 Asbestos

In total, 6 no. samples were obtained from depths between 0.5mbgl and 1.0mbgl and were analysed for asbestos. The laboratory analysis did not identify asbestos within any of the 8 no. soil samples analysed.

3.7.5 Summary of Soils Assessment

The assessment of soil sample analysis has identified that all results were reported below the GACs for 'commercial' end use. In addition, asbestos or asbestos containing materials (ACMs) were not identified. Slightly acidic soil conditions were noted in BH1 at 0.5m bgl. Overall, it is considered that the soils concentrations of contaminants do not present a significant risk to human health on the basis of the public open space (near residential) land use.

3.8 CONTROLLED WATERS ASSESSMENT

In total 3 no. groundwater samples were collected from BH1, BH2 and BH3 following appropriate well development. These samples were submitted to a UKAS accredited laboratory for analysis for suites of metals, organic hydrocarbons and a number of inorganic compounds. The screening summary sheet presented in Appendix F details the selected water quality standards used to assess each given contaminant and summarises the associated laboratory data, highlighting any results that exceed the relevant screening value. Laboratory Certificates are provided in Appendix H.

3.8.1 Metals

The groundwater samples were analysed for a variety of metals and from review of the results all the samples were found to be below the relevant TSV's.

3.8.2 Organic

Total Petroleum Hydrocarbons (TPHs)

All samples were analysed for the presence of petroleum hydrocarbons, and results were found to be below the

relevant TSV's (World Health Organisation (WHO) guideline values for petroleum hydrocarbons in groundwater and UK Drinking Water Standards (UK DWS)).

Polycyclic Aromatic Hydrocarbons (PAHs)

All samples were analysed for the presence of PAH compounds and were reported at concentrations below the relevant TSV's.

BTEX and Phenols

All samples were analysed for BTEX and from review of the results are found to all be below the relevant TSV's.

3.8.3 Inorganics

All samples were tested for a variety of inorganic compounds and from review of the results were found to all be below the relevant TSV's.

3.9 CONTROLLED WATERS ASSESSMENT – HUMAN HEALTH

Risk to health from contaminants in groundwater (via the vapour pathway) has been assessed via comparison of organic contaminant concentrations with applicable SOBRA GACgwvap.

Measured groundwater concentrations did not exceed the SoBRA groundwater screening criteria for assessing the risk to commercial developments from volatilisation of TPH, BTEX and PAH to indoor air.

3.10 CONTROLLED WATERS ASSESSMENT SUMMARY

The controlled waters assessment has identified contaminant concentrations in groundwater all below the relevant TSV's and therefore it is considered the site does not present a significant or potentially significant risk to controlled water receptors.

3.11 GROUND GAS ASSESSMENT

Two rounds of gas monitoring were undertaken between 25th February 2022 and 4th March 2022 from all three installed boreholes using a GA5000 Gas Analyser. The full ground gas screening tables are presented in Appendix G.

3.11.1 Meteorological Conditions

Weather conditions varied over the 2 no. monitoring rounds varied from sunny to rainy conditions. Barometric pressure was recorded between 1013mb during the 1st round, to 999mb during the 2nd round.

A wide range of metrological conditions can influence the generation and migration of soil gases at the site. Atmospheric pressure will increase emission rates, during low and falling atmospheric pressures. The solubility of gases also increases with pressure, lowering concentrations within the ground, as more gas will be dissolved in the groundwater.

High rainfall may cause shallow groundwater (where present) levels to rise, reducing the available pore space in which gases can exist, increasing the concentration of gas and therefore the release of gas to the atmosphere. Conversely, in some instances, rainfall can potentially seal off the ground surface, causing a build-up of gas and lateral migration. It is noted the monitoring screens were fully submerged in BH1 and BH2 and partially submerged in BH3 across the 2 no. monitoring rounds.

Higher temperatures increase mobility and decrease the gas solubility as well as having an impact on the source material of the gas. Higher temperatures increase degradation and therefore gaseous emissions.

Increased wind velocities can also cause increased gas emissions due to the Venturi effect, where high wind flows across a surface cause a pressure differential, resulting in movement of gas from the soil to atmosphere.

Considering the meteorological conditions recorded during each site visit, the results of the ground gas monitoring are considered representative with sufficient variation in temporal variations experienced over the monitoring period.

3.11.2 Site Gas Concentrations

The ground gas monitoring data collected from the 2 no. rounds of gas monitoring is presented in Appendix G with peak concentrations of methane (CH₄), carbon dioxide (CO₂), hydrogen sulphide (H₂S), and carbon monoxide (CO) summarised in Table 4. The minimum concentrations of oxygen (O₂) encountered at each borehole over all monitoring rounds is also present in Table 4 along with flow rates. The values are presented as the 'worst case' scenario for the existing boreholes. Table 4 also lists the Gas Screening Value (GSV) and modified Wilson and Card "characteristic situation" for each borehole, following the calculation methods and assumptions detailed in C665, section 8; for situation A (all development types except situation B).

Location	Max CH₄ (%)	Max CO ₂ (%)	Min O₂ (%)	Max H₂S (ppm)	Max CO (ppm)	Max Flow (l/hr)	GSV (l/hr)	Characteristic Situation / Risk (worst-case) *
BH1	0.5	9.2	18.8	0	1	16.8	1.546	Characteristic Situation 3 (CS3)
BH2	0.2	3.9	20.3	0	2	2.8	0.109	Characteristic Situation 2 (CS2)
BH3	0.2	0.9	21.0	0	1	0.3	0.003	Characteristic Situation1 (CS1)

Table 4 - Summary of Gas Monitoring Results

* GSV calculated based on conversion of the negative flow rate to positive flow rate to give 'worst case' scenario.

3.11.3 Ground Gas Risk Discussion

Shallow groundwater levels are high across the site, which can affect the movement of gases within the ground.

Water levels are noted to cover the well response zone completely for BH1 and BH2 and partially for BH3 across the 2 no. gas monitoring rounds. A reduced response zone can result in an increased gas pressure and release known as the "piston effect" caused by rising and falling water levels. As mentioned, the groundwater is shown to be above the response zone within BH1 and BH2 and an increased gas flow rates of 16.8l/hr (BH1) was encountered which is likely to be the piston effect. The increased gas flows rates from BH1 and BH2 are not considered to be representative of potential ground gas flow rates at the site due to the piston effect. BH3 was the only borehole not fully submerged by groundwater which showed a ground gas flow rate of 0.3l/hr which is considered appropriate for the geology underlying the site. The ground gas data retrieved from BH3 is considered to be provide the most representative ground gas data from the site.

As a further line of evidence in addition to ground gas monitoring data, soils were tested for Total Organic Carbon (TOC) concentrations which were reviewed in line with the methodology of CL:AIRE RB17 research bulletin (November 2012). Descriptions of the ground conditions at the site were examined and found to be generally absent of degradable materials, with the exception of BH01 which comprised an outcrop of Alluvium in the northern portion of site only. TOC concentrations were generally <0.7% (excluding BH1) which would represent a low organic content and thus a low gassing potential. Based on the above information the gas generation potential of soils across the majority of site (excluding the northern portion of site) is judged to be very low given the low organic content proven by TOC concentrations of soils.

From the 2 no. gas monitoring rounds undertaken to date the maximum methane concentrations ranged 0.2%v/v (BH2 and BH3) and 0.5%v/v (BH1). Maximum carbon dioxide concentrations ranged between 0.9%v/v (BH3) and 9.2%v/v (BH1). The maximum flow rate ranged between 0.3l/hr (BH3) and 16.8l/hr (BH1).

Whilst ground conditions vary across the site, the maximum recorded carbon dioxide concentration and maximum recorded flow rate from BH3 have been adopted as appropriate values as a suitably conservative approach for assessing the sites ground gas regime. Where elevated carbon dioxide concentrations above 5% have been detected these are not considered to be typical across the site and localised to BH1 only.

Based on the maximum calculated GSV at BH1 of 0.003l/hr, the ground gas risk for the current development proposals is considered to be indicative of a Characteristic Situation 1 (CS1) ground gas regime and consequently there no requirement for ground gas protection measures in future buildings on site.

3.12 UPDATED CONCEPTUAL SITE MODEL (CSM)

For a risk of pollution or environmental harm to occur as a result of ground contamination, all of the following elements must be present:

- a source, i.e. a substance that is capable of causing pollution or harm.
- a receptor (or target), i.e. something which could be adversely affected by the contaminant; and
- a pathway, i.e. a route by which the contaminant can reach the receptor.

TETRA TECH

If one of these elements is missing, there can be no significant risk. If all are present then the magnitude of the risk is a function of the magnitude and mobility of the source, the sensitivity of the receptor and the nature of the migration pathway.

A refined conceptual model of the site is developed in this section to identify sources, pathways and receptors, and thus identify plausible pollutant linkages. Following a review of the PRA, review of site investigation data, ground gas and groundwater sampling from the recent ground investigation and assessment of the associated data, the sources and potential pollutant linkages are discussed in the following sections and summarised in Table 5.

3.12.1 Sources

Reported contaminant concentrations in soils and groundwater are not considered to present a significant risk to future site users or water environment receptors.

Made ground was not identified onsite and therefore has been removed from the updated conceptual site model as a potential source.

The sites ground gas regime has been characterised as Characteristic Situation 1 (CS1), based on the site being underlain predominantly by Glacial Till. Alluvium deposits present in the northern portion of site may be a potential ground gas source, however due to the shallow groundwater table ground gas readings have been increased due to the piston effect and not considered to be fully representative of the ground gas risk in this area.

The PRA identified Radon on the site to be around 9.72%, and between 5-10% of homes within a 10km2 area are estimated above the Reference Level. This level is below the High level (>10% of homes within a 10km2 area estimated above the Reference Level), however consideration of Radon ingress should be taken into account during the building design stage.

3.12.2 Pathway – Receptor Linkages

The majority of site is underlain by Glacial Till which did not exhibit as elevated concentrations of hazardous ground gases. Proposed development plans indicate the development to comprises new pitches, roadway infrastructure and a pumping station. The pumping station is the only proposed new building as part of the current development plans and is shown to be in an area underlain by Glacial Till deposits, therefore the risk to the new proposed building in this area is low.

The Radon on the site is around 9.72%, and between 5-10% of homes within a 10km2 area are estimated above the Reference Level and therefore further consideration for the requirement of radon protection measures in proposed new buildings is recommended.

Table 5 - Updated Conceptual Site Model

On-site Contaminant	Pathway	Receptor	Risk	Comment
Potential contamination from historical railway in	 Direct dermal contact Inhalation of dust / vapours Ingestion Indirect (volatilisation to indoor air) 	 Future site users Construction Workers 	Low	Soil and groundwater samples tested did not contain any elevated contaminants above the relevant GAC or TSV.
the north of site	 Leaching to shallow groundwater and offsite migration 	GroundwaterSurface Water	Low	
Methane and carbon dioxide ground gases	 Inhalation of vapours / gases Ground gas migration via service entries 	Construction workersFuture site users	Low	The ground gas regime is classified as CS1.
Radon	Migration through soils indoor air	Future site users	Moderate	The Radon on the site is around 9.72%, and between 5-10% of homes within a 10km2 area are estimated above the Reference Level.
Off-site Contaminant	Pathway	Receptor	Risk	Comment
Offsite potential contaminative industries including adjacent filling station (Applegreen Service Station).	 Leaching to shallow groundwater and onsite migration 	 Onsite and shallow groundwater. 	Low	Soil and groundwater samples tested did not contain any elevated contaminants above the relevant GAC or TSV.

4.0 CONCLUSIONS & RECOMMENDATIONS

Following an assessment of soil, groundwater and ground gas concentrations the following conclusions have been drawn on the basis of the proposed commercial end use at the site:

- Reported contaminant concentrations detected within the soils and groundwater are considered to pose a low risk to receptors.
- The site's ground gas regime has been assessed as CS1 very low risk.
- Radon on the site is indicated to be around 9.72%, and consideration of Radon ingress should be taken into account during the building design stage.

On the basis of the above, there is considered to be a **low to moderate** risk to the future development and mitigation measures are not required.

Recommendations to address short term potential risks to construction workers are provided in section 4.1.

4.1 CONTRACTOR WORKER HEALTH AND SAFETY

The risks posed to construction workers through short term exposure to potentially reduced quality soils and groundwater can be minimised through adherence to the following relevant health and safety regulations / guidance:

- Management of Health and Safety at Work Regulations (NI) 1999.
- Construction (Health, Safety and Welfare) Regulations (NI) 1999.
- 'Protection of workers and the General Public during the Development of Contaminated Land' published by HSE (1991); and
- 'A Guide to Safe Working on Contaminated Sites, R132' published by CIRIA (1996).

The health and safety implications of working with potentially contaminated soils and groundwater should be fully considered prior to the commencement of any earthworks through the development of an appropriate health and safety plan. It is considered that the measures adopted to minimise the exposure of construction workers to contaminants should include following as a minimum:

1) Provision should be made for washing and toilet facilities; clean and dirty collection, laundering and storage facilities for protective clothing; and wash facility for footwear.

2) Provision of Personal protective equipment (PPE) as a minimum PPE should include the following:

- headwear
- footwear
- disposable overalls/impermeable outer garments

TE TETRA TECH

- gloves
- eye protection

4.2 OFF-SITE REMOVAL OF SOIL

Where there is a requirement to remove materials from site as part of the future development a waste classification should be carried out in order to classify the material and to determine appropriate disposal options (including transportation). The characterisation and classification of wastes in Ireland is governed by waste management legislation primarily informed by EU Directives including the Waste Framework Directive, as implemented at national level in Ireland via the Waste Management Acts 1996-2008 and subsequent regulations.

4.3 UNEXPECTED CONTAMINATION

Should any unexpected materials be encountered during the development earthworks, site operations should stop until the materials have been identified. Examples of such materials include buried barrels or containers, soil or water with an unusual colour or odour, and other evidence of contamination, for example iridescent sheens (like oil or diesel) on soil or water. Should such contamination be identified the following measure should be undertaken by construction workers to minimise the potential risks.

FIGURES

Figure 1- Site Location Plan

NOTES

 All measurements shown are in metres, and all levels are to ordnance datum unless otherwise indicated

2. All Coordinates are to Irish Grid, unless otherwise noted.

P2 Rev	01/01/2022 Issue Date	Bounda	ary Alteratio	n			PA App	
Status	PRELIN							
Client	Donega			uncil				
Project	The Co Multi-Us							
Drawing	Site Loo	catior	ı Plan					
Scale	1:2500	@ A′	1					
		EN						
Contact [4	478 Cas	gomery Hou stlereagh Ro BT5 6BQ			040 2000 n@mcadamd adamdesign.		<
Drawn Date	DWW 2022-02-09		Checked Date	2022-02		Approved Date	PA 2022-02-0	9
Project LIF	- MCA		Zone - Leve ST1- 00	- DR	- C -	Number 1000	- Revision - P2	٦
Project N E2324			Status cod S2 - Fo			ו		
	nensions are ir nensions. Dime							

Figure 2- Proposed Development Plan

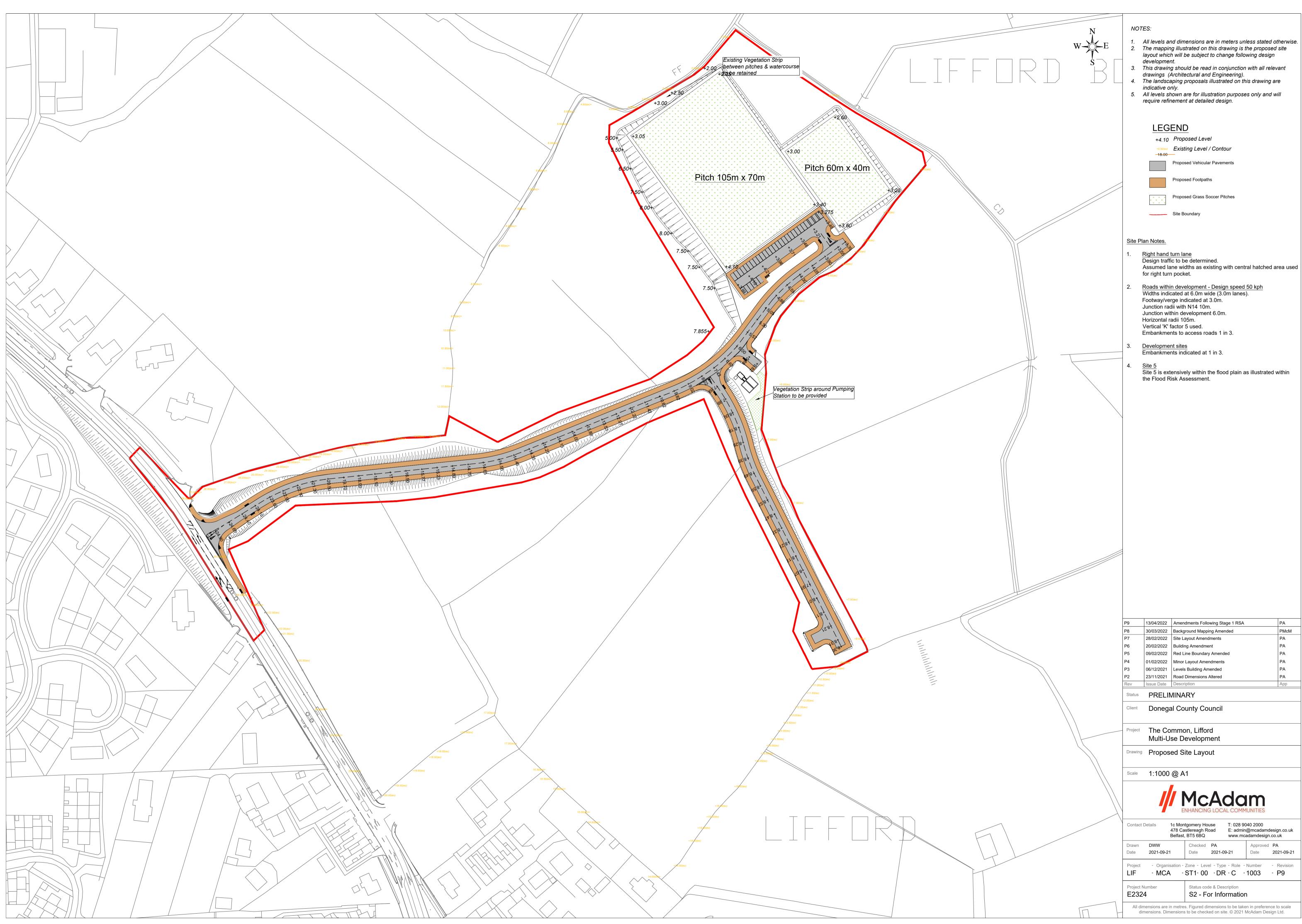
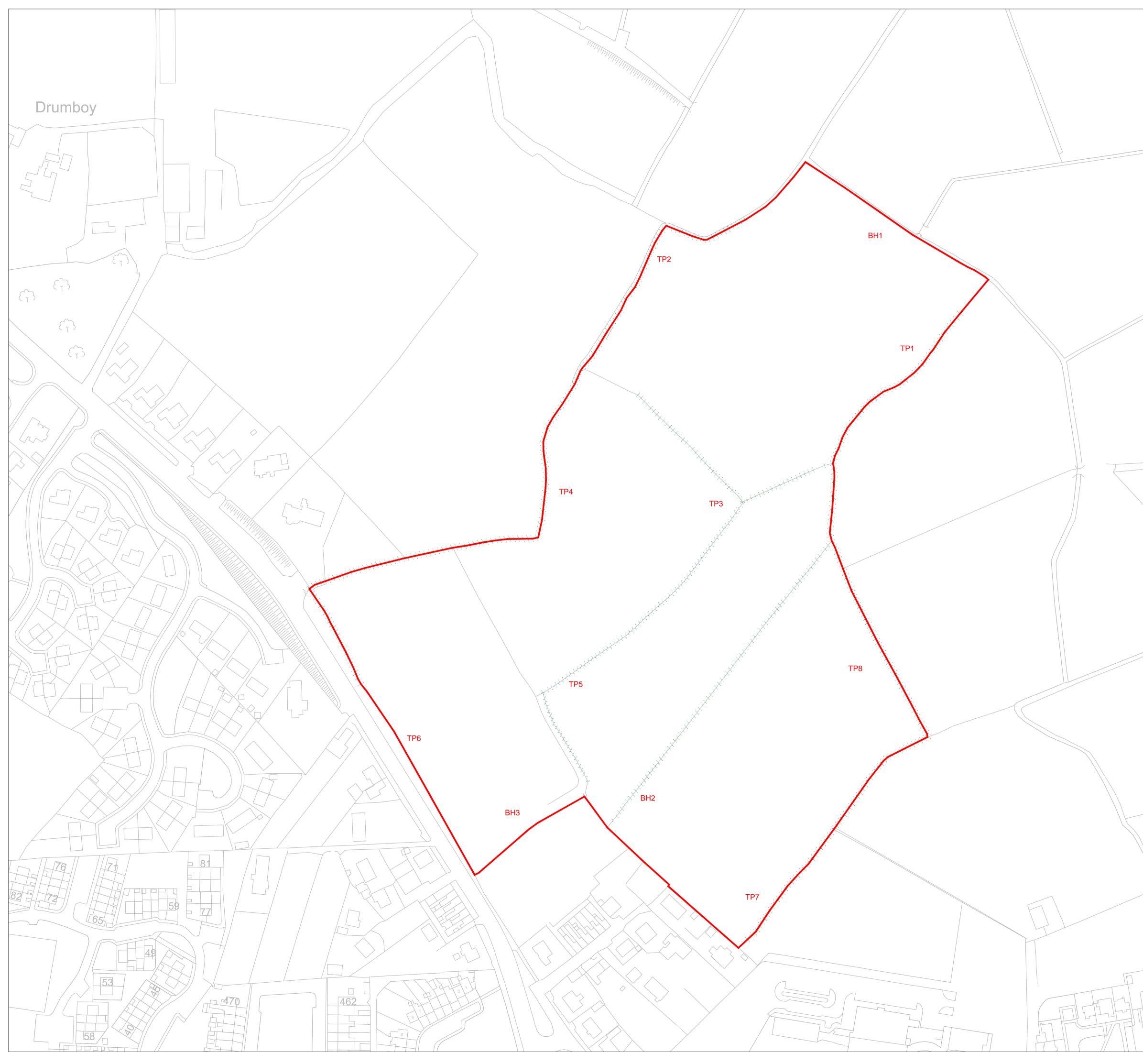



Figure 3- Site Investigation Plan

W-O-E S	ordnance datum u	nts shown are in metres, and all levels are nless otherwise indicated are to Irish Grid, unless otherwise noted.	e to
	Legend:	Site Boundary	
	· · · · · · · · · · · · · · · · · · ·	·	- App
	Status PRELIMIN	VARY	App
	Status PRELIMIN Client Donegal C	NARY County Council	- App
	Status PRELIMIN Client Donegal C Project The Comr	VARY	- App
	Status PRELIMIN Client Donegal C Project The Comr	NARY County Council mon, Lifford Development	- App
	Status PRELIMIN Client Donegal C Project The Comr Multi-Use Drawing Drawing Site Locat Scale 1:1250 @	NARY County Council mon, Lifford Development tion Plan	- App
	Status PRELIMIN Client Donegal C Project The Comr Multi-Use Drawing Scale 1:1250 @	NARY County Council mon, Lifford Development tion Plan A1 MCACOMMUNITIES	- App
	Status PRELIMIN Client Donegal C Project The Comr Multi-Use Drawing Drawing Site Locat Scale 1:1250 @ Contact Details 1c M 478 Befra	NARY County Council mon, Lifford Development tion Plan A1	n.co.uk
	Status PRELIMIN Client Donegal C Project The Comr Multi-Use Drawing Drawing Site Locat Scale 1:1250 @ Contact Details 1c M 478	NARY County Council mon, Lifford Development tion Plan A1 A1 A1 A1 A1 A1 A1 A1 A1 Checked PA Approved PA	n.co.uk ık
	Status PRELIMIN Client Donegal C Project The Comr Multi-Use Drawing Scale 1:1250 @ Contact Details 1c N 478 Belfa Drawn DWW Date 2021-09-21	NARY County Council mon, Lifford Development tion Plan A1 Montgomery House Castlereagh Road ast, BT5 6BQ Checked PA Date 2021-09-21 Date 202	n.co.uk ık 21-09-21 Revision
	Status PRELIMIN Client Donegal C Project The Comr Multi-Use Drawing Scale 1:1250 @ Contact Details 1c M 478 Drawn DWW Date 2021-09-21 Project - Organisation	NARY County Council mon, Lifford Development tion Plan A1 Montgomery House Castlereagh Road ast, BT5 6BQ Checked PA Date 2021-09-21 n - Zone - Level - Type - Role - Number - F	n.co.uk ık 21-09-21 Revision

APPENDIX A – REPORT CONDITIONS

REPORT CONDITIONS

Generic Quantitative Risk Assessment

This report is produced solely for the benefit of McAdam Design Ltd and no liability is accepted for any reliance placed on it by any other party unless specifically agreed in writing otherwise.

This report is prepared for the proposed uses stated in the report and should not be used in a different context without reference to TTech. In time improved practices, fresh information or amended legislation may necessitate a re-assessment. Opinions and information provided in this report are on the basis of TTech using due skill and care in the preparation of the report.

This report refers, within the limitations stated, to the environment of the site in the context of the surrounding area at the time of the inspections. Environmental conditions can vary, and no warranty is given as to the possibility of changes in the environment of the site and surrounding area at differing times.

This report is limited to those aspects reported on, within the scope and limits agreed with the client under our appointment. It is necessarily restricted, and no liability is accepted for any other aspect. It is based on the information sources indicated in the report. Some of the opinions are based on unconfirmed data and information and are presented as the best obtained within the scope for this report.

Reliance has been placed on the documents and information supplied to TTech by others but no independent verification of these has been made and no warranty is given on them. No liability is accepted, or warranty given in relation to the performance, reliability, standing etc of any products, services, organisations or companies referred to in this report.

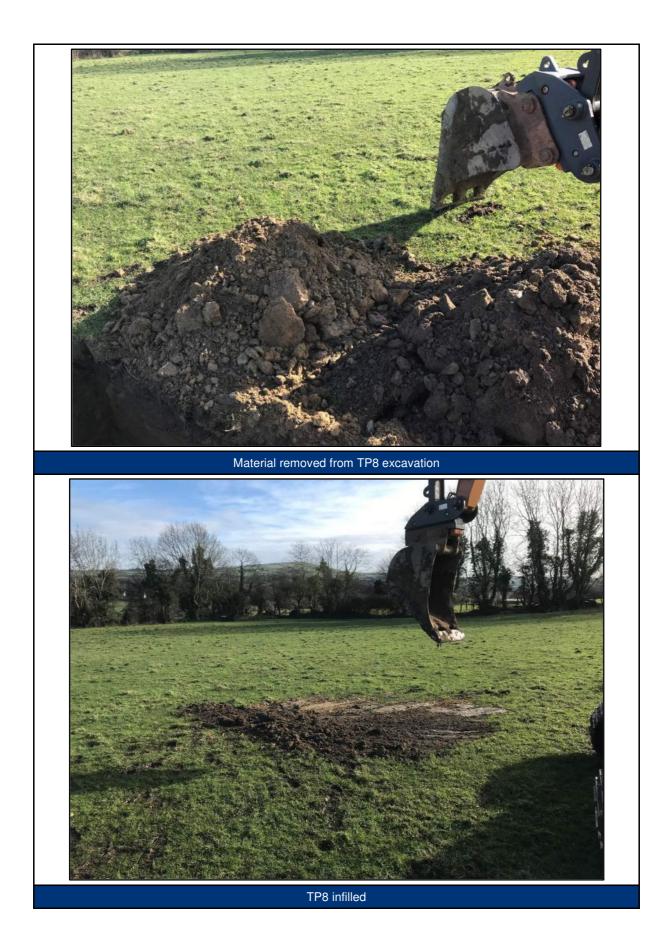
Whilst skill and care have been used, no investigative method can eliminate the possibility of obtaining partially imprecise, incomplete or not fully representative information. Any monitoring or survey work undertaken as part of the commission will have been subject to limitations, including for example timescale, seasonal and weather-related conditions.

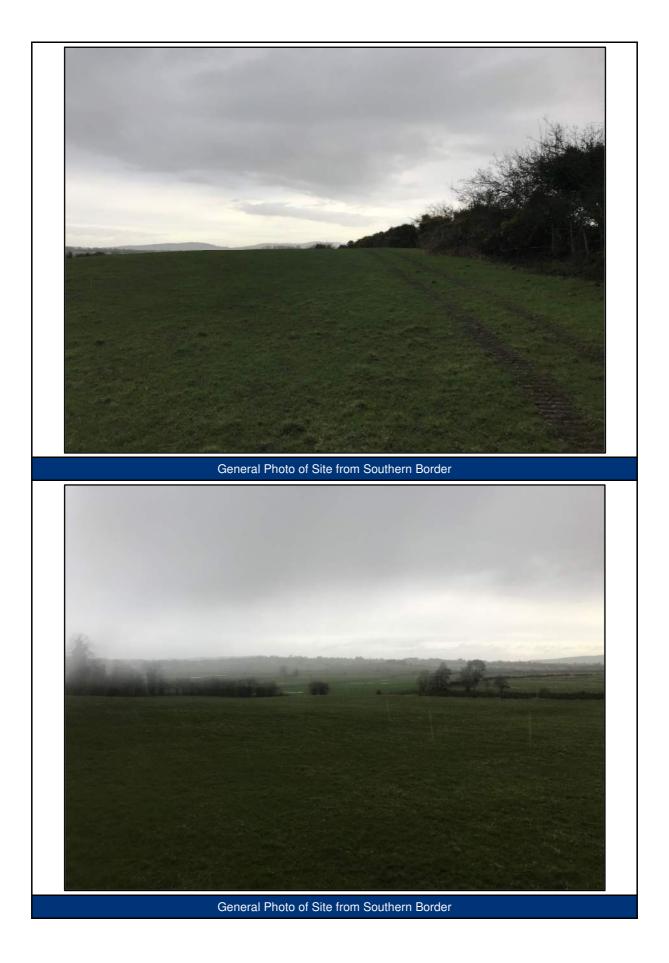
Although care is taken to select monitoring and survey periods that are typical of the environmental conditions being measured, within the overall reporting programme constraints, measured conditions may not be fully representative of the actual conditions. Any predictive or modelling work, undertaken as part of the commission will be subject to limitations including the representativeness of data used by the model and the assumptions inherent within the approach used. Actual environmental conditions are typically more complex and variable than the investigative, predictive and modelling approaches indicate in practice, and the output of such approaches cannot be relied upon as a comprehensive or accurate indicator of future conditions.

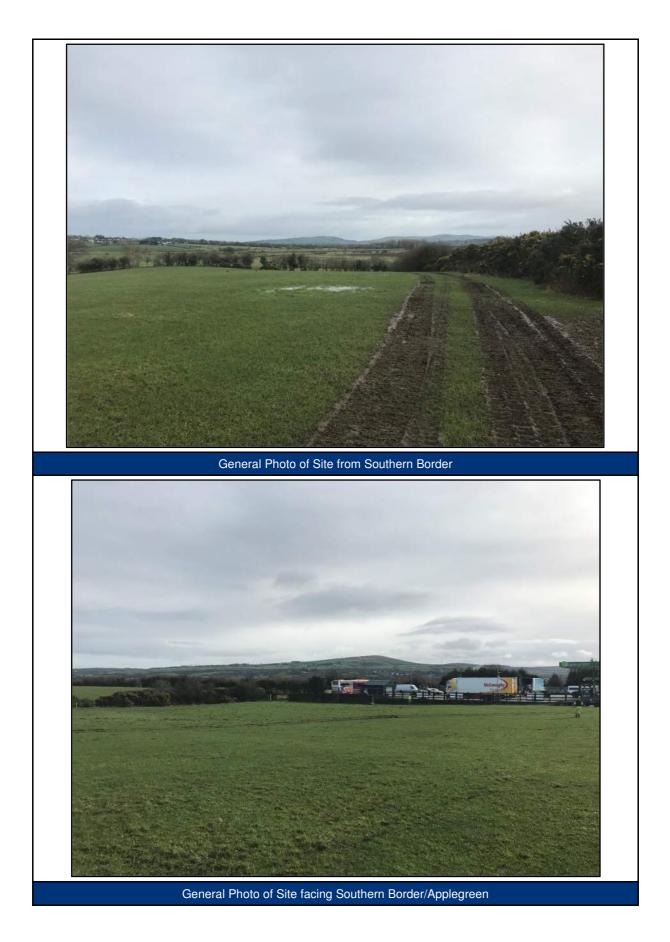
The potential influence of our assessment and report on other aspects of any development or future planning requires evaluation by other involved parties.

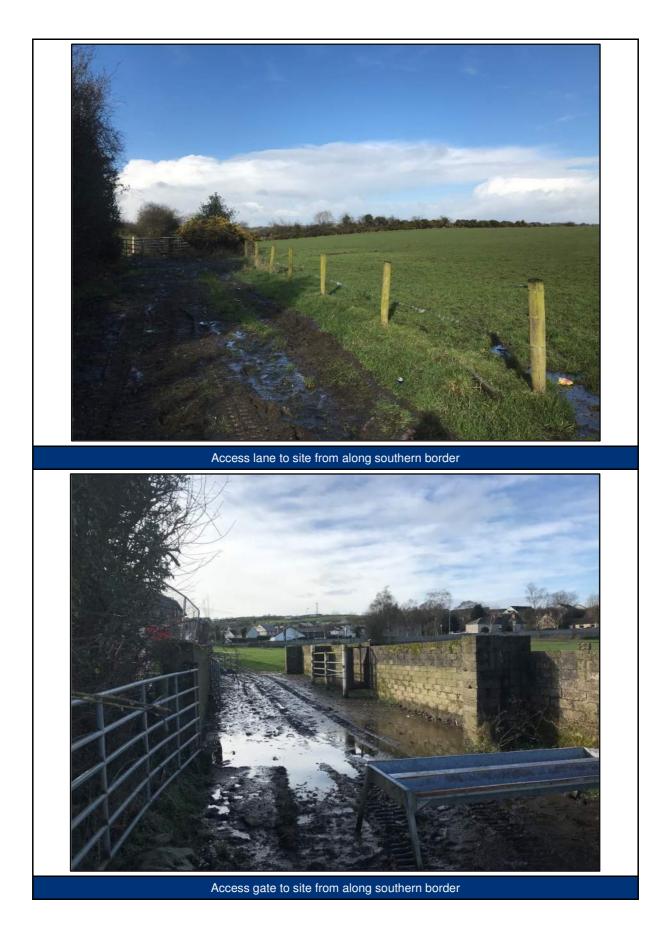
The performance of environmental protection measures and of buildings and other structures in relation to acoustics, vibration, noise mitigation and other environmental issues is influenced to a large extent by the degree to which the relevant environmental considerations are incorporated into the final design and specifications and the quality of workmanship and compliance with the specifications on site during construction. TTech accept no liability for issues with performance arising from such factors.

APPENDIX B – PHOTOGRAPHIC LOG









APPENDIX C – BOREHOLE AND TRIAL PIT LOGS

		Project:	Lifford Common				Easting:		Locatio		etails				Status		Borehole N	lumber
	Ŧ	Location:	Letterkenny, Lif	ford, Co. Donega	al		Level:			Dep		5.00m			FINAL	-	BH	1
TET	RA TECI	-I Client:	McAdam Design	Ltd			Logger:	JA		Type	e: ination	WS					Sheet 1	of 1
		Metho	d, Plant and Crew		Diame	ter	Cas	sing					roundwat	er		Sca		1:50
From (m) 0.00	To (m) 1.20	Type Inspection Pit	Plant Used HAND TOOLS	Crew JS	Depth (m) 1.20	Diam (mm)	Depth(m) 5.00	Diam (mm)	Strike ((m)	Casing (m)	Sealed (m)	I Rose To (m)	Time (mins)		Remarks	Che	cked By:	
1.20	5.00	Window Sample	r DANDO TERRIER	JS	5.00	300 101	5.00	101									roved By: t Date:	17/02/2022
																	sh Date:	17/02/2022
									Reduced		ater	Inst /			S	amples and Te		
			Strata Descriptio	n			Legend	Depth (m)	Level (mAOD)		el (m)	Backfill	Depth (m	Ref		Tests	/ Results	
Vegeta Sand i	ation und s fine.	erlain by clayey s	sandy SILT.					0.20										
\TOP		mottled reddish	brown organic SILT.			/	$(\times \times \times \times)$						0.50	ES1				
-			-				$(\times \times $						0.50					
							$\times \times \times \times$	1.00										1
SAND	througho	ally dark brown out.	organic SILT with inter	nittent seams (<10n	nm) of silty		× × × (× × × × × ×	1.00			•							1
Sand i	s fine.						(•		1					
							$(\times \times $				•							
							(•		1					2
							(4			*		1					-
							(2.50	ES2				
							(•		1					
							$\times \times \times$				•		1					3
							× × × (× × ×				•							
							$\times \times \times$	<			•							
							$\times \times \times$				•							
							$\times \times \times$				•							4
							$\times \times \times$											
							× × × × × × × × ×				•							
							$(\times \times $				•							
		EOH at 5.0	00m - Terminated at s	cheduled depth.			<u> </u>	5.00			•		5.00	ES3				5
																		6
																		7
																		8
																		~
							1											9
																		10
																		10
	ations / R undwater	encountered.									-	From (m)	1	-	g Runs	Remarks	Hammer Serial No.	Energy Ratio 9
9.00													- (,	()				
																	Project	: Number
																	787-B	034486
															1			

		Project:	Lifford Common					Locatior						Status		Boreho	le Number
ſ	TŁ	Location:	Letterkenny, Liffo	ord, Co. Doneca		Easting: Level:			Northi Depth		2.30m		1	FINAL			BH2
TETR					•	Logger:	JA		Type:		WS				-	-	,112
		Client:	McAdam Design I	-10	1				Inclina	ation:					-	Shee	et 1 of 1
			od, Plant and Crew		Diameter		sing Diam	Strike C	asing	Spaled		roundwate				Scale:	1:50
From (m)	To (m) 1.20	Type Inspection Pit	Plant Used HAND TOOLS	Crew JS	1.20 300	Depth(m) 2.30	(mm) 101	(m) 2.20	Casing 9 (m)	Sealed (m)	Rose To (m) 1.40	Time (mins) 20		Remarks		Checked By: Approved By:	
1.20	2.30	Window Sample	er DANDO TERRIER	JS	2.30 101											Start Date:	17/02/202
																Finish Date:	17/02/202
1					<u> </u>	1		Reduced	Wate	or	Inst /			Si	amples and		
			Strata Description			Legend	Depth (m)	Level (mAOD)	Level (Inst / Backfill	Depth (m)	Ref		1	Fests / Results	
Grass u	Inderlain	by sandy gravel	lly SILT.				1										
sandsto		oarse. Gravel is	subrounded to subangul	ar fine to medium o	f schist and	×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.20										
TOP Brown o	aravelly s	ilty sandy CLAY	·]	\times	0.50			•		1					
Sand is	fine to c	oarse. Gravel is	subangular fine to coars SILT with frequent cobbl	e of schist.	rad badrack)	(* * * 											
Sand is	fine to c	oarse. Gravel is	subangular fine to coars	e of schist. Cobbles	are subangular	(* * * * * * * (* * *						1.00	ES1				
of schis	st.					(* * * * * * *				-		1					
						(* * * * * * *				-							
						(* * * * * *											
						(* * * * * * *						2.00	ES2				
						$\begin{pmatrix} & & & \\ & & & \\ & & & \times \end{pmatrix}$				Z		2.00	L32				
	E	EOH at 2.30m ·	- Terminated on possibl	e boulder/bedrock		10.0101	2.30				بالف	1					
							1					1					1
Observat	tions / Re	emarks										T T	ampling				ner Informatio
										F	From (m)	To (m) Di	iam (mm)	Recovery %	Remar	ks Serial	No. Energy Rati
											l					Pro	ject Number
										,							
																787	-B03448

Data Control Letter kenny, Lifford, Co. Donegal March Letter March Bits Unit: Method, Inter and Con Dameter Calling Interview Street 1 of 1 Interview Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Interview Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Interview Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Interview Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Interview Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Interview Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street 1 of 1 Street			Project:	Lifford Common				I	ocation	n Detai	s			Status	Borehol	e Number
Interface Description Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>		F.			and Ca Danaga										В	U 2
Mathies, Real and Grave Description Description <thdescription< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>JA</td><td></td><td></td><td></td><td></td><td></td><td>FINAL</td><td>D</td><td>n5</td></thdescription<>								JA						FINAL	D	n 5
Internet Term					Ltd					Inclinatio						
1.30 1.20 Market free Mark	From (m) T	To (m)			Crow			Diam	Strike C	asing Sea				Pemarks	_	1:50
State Description Law Law <thlaw< th=""> Law <thlaw< th=""></thlaw<></thlaw<>	0.00	1.20	Inspection Pit	HAND TOOLS		1.20 300 2.70 101		(mm)	(m)	(m) (m 	i) (m 2.2	i) (mins) 0 20		Reliaiks	Approved By:	17/02/2022
Statu Description curve Random total Identity total Identity total Identity Identity <thidentity< th=""> Identity I</thidentity<>																17/02/2022
Send is the to come. Give it is subargular first is metian of sofial, and income to some soft SLT. Comparison SLT				Strata Description	I		Legend	Depth (m)	Level	Water Level (m)	Inst Backf		n) Ref	Samples		
Beengthermon and y Sk1. Service of solver (The late manifered bedreck). 1 to ref 1 to 1 to ref 1 to 1 to 1 to 1 to 1	Sand is fi	ine to coa	y sandy gravel arse. Gravel is	lly SILT. subrounded to subangu	lar fine to medium of	schist and	$(\times \times $									
Decrementary privately statute and the Result we automated bedreads.	Orangish	ı brown s	andy SILT.]	$\times \times$	0.40			••	•				
EOH at 2.70m - Terminated on possible boulder/bedrook. 2.70 2.70 2.70 2.70 2.70 2.70 2.70 1.70	Brown sa	andy grav	elly SILT with	frequent cobbles (Possil	ole weathered bedro											
EDH at 270m - Terminated on possible builder/bedrook. 2.70 2.70 2.70 55 55 EDH at 2.70m - Terminated on possible builder/bedrook. 2.70 1			arse. Gravel is	subangular fine to coars	se of schist. Cobbles	are subangular	$\times \times \times$					1.00	ES1			1
EOH at 2.70m - Terminated on possible boulder/bedrook. 2.70 2.70 2.70 2.70 2.70 2.70 2.70 1.70												•				
EOH at 2.70m - Torminated on possible boulder/bedrock. 2.70 Image: Comparison of the second of the																
ECH at 2.70m - Terminated on possible boulder/bedrook. 2.70 Image: Control of the control of th							$\times \times $									2 -
EOH at 2.70m - Terminated on possible boulder/bedrock. 2.70 1 2.70 1							$ \times \times$					•				2
EOH al 2.70m - Terminated on possible boulderbedrock. 2.70 1							\times \times \times					2.50	ES2			
Image: Simple state in the sector of the		EC	OH at 2.70m ·	- Terminated on possib	le boulder/bedrock.			2.70				<u>.</u>				
Observations / Remarks Image: Ima																3 -
Observations / Remarks Image: Ima																
Observations / Remarks Image: Ima																
Observations / Remarks Image: Normal Sector Se																
Observations / Remarks Image: Sampling Runs <																4 -
Observations / Remarks Tor (n) Tor (n) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
Observations / Remarks run (no) Torm) Rumark run (no) Torm) Rumark Samaline																
Observations / Remarks run (no) Torm) Rumark run (no) Torm) Rumark Samaline																5 -
Observations / Remarks Image: Sampling Runs Hammer Information Image: Runs Hammer Information Image: Runs Image: Runs																5
Observations / Remarks Image: Sampling Runs Hammer Information Image: Runs Hammer Information Image: Runs Image: Runs																
Observations / Remarks Image: Sampling Runs Hammer Information Image: Runs Hammer Information Image: Runs Image: Runs																
Observations / Remarks Fom (m) To (m) Remarks Fom (m) Remarks Femarks																6 -
Observations / Remarks Fom (m) To (m) Remarks Fom (m) Remarks Femarks																
Observations / Remarks Fom (m) To (m) Remarks Fom (m) Remarks Femarks																
Observations / Remarks Fom (m) To (m) Remarks Fom (m) Remarks Femarks																
Observations / Remarks From (m) To (m) Dem (mm) Recovery % Remarks Serial No. Energy Ratio Image: Control of the series of the																7 -
Observations / Remarks From (m) To (m) Dem (mm) Recovery % Remarks Serial No. Energy Ratio Image: Control of the series of the																
Observations / Remarks From (m) To (m) Dem (mm) Recovery % Remarks Serial No. Energy Ratio Image: Control of the series of the																
Observations / Remarks From (m) To (m) Dam (mm) Recovery % Remarks Serial No. Energy Ratio Image: Control of the series of the																8 -
Image: Constraint of the second se																0
Image: Constraint of the second se																
Observations / Remarks From (m) To (m) Image: Non-transmitted in the i																
Image: constraint of the second of the se																9 -
Image: constraint of the second of the se																
Image: constraint of the second of the se																
Image: constraint of the second of the se																
From (m) To (m) Diam (mm) Recovery % Remarks Serial No. Energy Ratio Image: Project Number Image: Project Numer </td <td></td> <td>10 -</td>																10 -
Project Number	Observatio	ons / Ren	narks								E	1				- 1
											From (10 (m)	Diam (mm)	Recovery % Re	Serial N	. Energy Ratio %
															Pro	iect Number
															787	-B034486

	Project: Lifford Co	ommon			Lo	cation Deta			S	tatus		Pit Nur	nber
Tt		nnv. Lifford	l, Co. Donegal	Easting: Level:		Northi Depth		Om	FI	NA	1	TP	1
TETRA TECH		Design Ltd		Logger:	JA	Type:					-		
												Sheet 1	
	Pit Dimensions	Hole Inform		Strike (m)	Rose To (m)	Groundy Afte	vater er (mins)	R	emarks		Scale: Checked By:	1:25
		Shoring:	NONE					. (Approved By:	
	0.60m	Stability:	STABLE									Start Date:	17/02/2022
	3.00m	Plant:	TRACKED EXCAVATOR									Finish Date:	17/02/2022
	Strata D	escription		Legend	Depth (m	Reduced Level (mAOD)	Water Level (m)	Backfill	Depth (m)	Ref	Sample	s and Testing Tests / Results	
Grass over brown	n slightly sandy slightly	gravelly SILT	r (Topsoil).			(IIAOD)			Depth (III)	Kei		Tests / Results	
Sand is fine to co	barse. Gravel is subroun	ded fine to r	medium of schist and										-
mudstone.													-
Light grov mottle	d brownich grow growel		ing to coorce CAND		0.40								-
Gravel is subang	ed brownish grey gravell ular to subrounded fine	to coarse of	schist.	× ^ × × ×					0.50	ES1			-
				× × ×									-
				×××									-
				x ×									-
				××× ××××	-								1-
				$\times \times $									-
				$\mathbf{x} \mathbf{x} \mathbf{x}$									-
				× × × ×									-
				×××					1.50	ES2			-
				× × ×									-
				× × ×									
				$_{\times}$ $_{\times}$ $_{\times}$									-
EOH a	at 2.00m - Terminated in r	natural strata	at scheduled depth.	* X 31	2.00								2 -
													-
													-
													-
													-
													-
													-
													-
													3 -
													-
													-
													-
													-
													-
													-
													4
													4 -
													-
													-
													-
													-
													-
													-
					-				-				5 -
Observations / Re	marks										1 Locks	ley Business Park,	
No groundwater enc											Belfast,		
											BT6 9U 028 9070		
												Project Numb	er
												787-B0344	186

	Project: Lifford Common	F	Lo	cation Deta			S	tatus		Pit Nur	nber
TŁ	Location: Letterkenny, Lifford, Co. Donegal	Easting: Level:		Northi Depth	-	m	FT	NAL		ТР	2
TETRA TECH	Client: McAdam Design Ltd	Logger:	JA	Type:				1 4/ 12	-		_
	-									Sheet 1	
	Hole Information Pit Dimensions Orientation: 158°	Strike (m)	Rose To (m)	Froundw Afte	/ater r (mins)	Re	emarks		Scale: Checked By:	1:25
	Shoring: NONE					,				Approved By:	
	0.60m Stability: STABLE								:	Start Date:	17/02/2022
	3.00m Plant: TRACKED EXCAVATOR									Finish Date:	17/02/2022
	Strata Description	Legend	Depth (m	Reduced (mAOD)	Water Level (m)	Backfill	Denth (m)	Pof	Samples	and Testing	
Sand is fine to co mudstone. TOP Dark grey mottle SAND. Gravel is subrour Light brown silty Gravel is subrour mudstone.	t 2.00m - Terminated in natural strata at scheduled depth.	Legend	2.00) Level (mAOD)	Level (m)	Backfill	Depth (m)	ES1		Tests / Results	
											-
											5
Observations / Re No groundwater enc		<u> </u>	L				<u> </u>				
										Project Numb 787-B0344	

	Project: Lifford Common		Lo	ocation Deta			S	itatus	Pit Nur	nber
TŁ	Location: Letterkenny, Lifford, Co. Donegal	Easting: Level:		North Depth	-	Dm	FT	NAL	TP3	3
TETRA TECH	Client: McAdam Design Ltd	Logger:	JA	Type:						
	-								Sheet 1	
	Hole Information Pit Dimensions Orientation: 127°	Strike (m)	Rose To (m)	Groundv	vater er (mins)	R	emarks	Scale: Checked By:	1:25
	Shoring: NONE								Approved By:	
	0.60m Stability: STABLE								Start Date:	17/02/2022
	3.00m Plant: TRACKED EXCVATOR								Finish Date: Samples and Testing	17/02/2022
	Strata Description	Legend	Depth (n		Water Level (m)	Backfill	Denth (m)	Ref		
Sand is fine to co mudstone. TOP Light brown mott moderate cobble Gravel is subrour Cobbles (up to 2- sandstone and po pelite.	t 2.00m - Terminated in natural strata at scheduled depth.		2.00	(mAOD)	Level (m)		Depth (m)	ES1	Tests / Results	2-
										- - 5 —
Observations / Po	marks								1 Locksley Business Park,	5
Observations / Re No groundwater enc									Notcossey Business Park, Montgomery Road, Belfast, BT6 9UP 028 9070 6000	
									Project Numbe	er
									787-B0344	86

	Project: Lifford Co	ommon		Lo	ocation Deta			S	tatus		Pit Nun	nber
TŁ			Easting: Level:		North Depth	5)m	ст			TP4	4
TETRA TECH		nny, Lifford, Co. Donegal	Level: Logger:	JA	Туре:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		NA	L	16.	+
	Client: McAdam	Design Ltd	55								Sheet 1	of 1
		Hole Information				Groundv				Scal		1:25
	Pit Dimensions	Orientation: 95° Shoring: NONE	Strike	(m)	Rose To (m)	Afte	er (mins)	R	emarks		cked By: roved By:	
	0.60m	Stability: STABLE									t Date:	17/02/2022
	3.00m	Plant: TRACKED EXCAVATOR									sh Date:	17/02/2022
	Strata D	accription	Logond	Depth (n	Reduced	Water	Backfill		1	Samples an	d Testing	
		escription	Legend	Depth (ii	n) Level (mAOD)	Level (m)	DdCKIIII	Depth (m)	Ref	т	ests / Results	
Sand is fine to co mudstone. TOP	barse. Gravel is subroun	gravelly SILT (TOPSOIL). ded fine to medium of schist and tly gravelly sandy SILT.		0.30								
Sand is fine to co sandstone.	barse. Gravel is subangu	lar to subrounded fine to medium of	* * * * * * * * * * * * * * * *	· > > > >				0.50	ES1			- - - - - - - - - -
Light hugung (sug			× × × ×	0.80								-
Light brown/grey Gravel is subangi mudstone.	/ slightly silty very grave ular to subrounded fine	elly fine to coarse SAND. to coarse of quartz sandstone and		22 - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								1
								1.50	ES2			
EOH a	at 2.00m - Terminated in r	natural strata at scheduled depth.		2.00								- - - - - - - - - - - - - - - - - - -
												3
												- - - - 4
Observations / Re No groundwater enc				1						1 Locksley E Montgomen Belfast, BT6 9UP 028 9070 600		5 -
											Project Numb 87-B0344	

	Project: Lifford Commo	on	F	Lo	ocation Deta			S	tatus		Pit Nur	nber
TŁ			Easting: Level:		Northi Depth		Om	FT	NAL		ТР	5
TETRA TECH	Client: McAdam Desig		Logger:	JA	Type:					-		-
											Sheet 1	
		Information ration: 69°	Strike ('m)	Rose To (m)	Groundv Afte	vater er (mins)	R	emarks		icale: Thecked By:	1:25
	Shorin										Approved By:	
	0.60m Stabili										itart Date:	17/02/2022
	3.00m Plant:	TRACKED EXCAVATOR									inish Date:	17/02/2022
	Strata Descript	tion	Legend	Depth (n		Water Level (m)	Backfill	Donth (m)	Dof	Samples	and Testing	
Sand is fine to co mudstone. TOP Light brown/grey Gravel is subang mudstone.	Strata Descript	ly SILT (TOPSOIL). ne to medium of schist and e to coarse SAND. arse of quartz sandstone and		2.00	n) Level (mAOD)	Vater Level (m)		Depth (m)	E51		Tests / Results	2 - 2 - 3 -
Observations (2				-						1 1 00/00/0	ay Rusiness Dark	5 -
Observations / Re No groundwater enc												
											Project Numb	

	Project: Lifford C	Common		F	Lo	ocation Deta			S	itatus		Pit Nu	mber
TŁ	Location: Letterke	nny, Lifford	, Co. Donegal	Easting: Level:		North Depth		0m	FT	NA	l	ТР	6
TETRA TECH		Design Ltd		Logger:	JA	Type:					_		-
												Sheet :	
	Pit Dimensions	Hole Inform Orientation:		Strike ('m)	Rose To (m)	Groundv	vater er (mins)	R	emarks		Scale: Checked By:	1:25
		Shoring:	NONE									Approved By:	
	0.60m	Stability:	STABLE									Start Date:	17/02/2022
	3.00m	Plant:	TRACKED EXCAVATOR					1			<u> </u>	Finish Date:	17/02/2022
	Strata D	Description		Legend	Depth (r		Water Level (m)	Backfill	Death (m)	Def	Sample	es and Testing	
Sand is fine to co mudstone. TOP Light brown/grey Gravel is angular and schist.	n slightly sandy slightly parse. Gravel is subrour v slightly silty very grav	gravelly SILT nded fine to n elly fine to co coarse of qua	nedium of schist and	Legend	0.25	(mAOD)	Level (m)	Backfill	Depth (m)	ES1		Tests / Results	2 - 3 -
Observations / Re	marks				-							sley Business Park,	5 -
No groundwater enc											Montgo Belfast BT6 9L 028 907	JP 0 6000	
												Project Numb 787-B0344	

	Project: Lifford C	Common		F	Lo	ocation Deta			S	tatus		Pit Nu	mber
TŁ	Location: Letterke	enny, Lifford	l, Co. Donegal	Easting: Level:		North Depth		0m	FI	NA	1	ТР	7
TETRA TECH		n Design Ltd		Logger:	JA	Type:	ТР				-		
		Hole Inform					Ground	votor				Sheet 1 Scale:	1 of 1 1:25
	Pit Dimensions	Orientation:		Strike ((m)	Rose To (m)		er (mins)	R	emarks		Checked By:	1.25
		Shoring:	NONE									Approved By:	
	0.60m	Stability:	STABLE									Start Date:	17/02/2022
	3.00m	Plant:	TRACKED EXCAVATOR								Comple	Finish Date: es and Testing	17/02/2022
	Strata D	Description		Legend	Depth (r		Water Level (m)	Backfill	Denth (m)	Ref	Sample		
Sand is fine to co mudstone. TOP Light brown/grey Gravel is angular and schist.	n slightly sandy slightly parse. Gravel is subrour v slightly silty very grav	gravelly SILT nded fine to r elly fine to co coarse of qua	nedium of schist and warse SAND. artz sandstone mudstone		2.00	(mAOD)	Level (m)		Depth (m)	ES1		Tests / Results	2
Observations / Po	marks				-						1 Locks	sley Business Park,	5 -
Observations / Re No groundwater enc												omery Road, , JP	
												Project Numb 787-B0344	

	Project: Lifford C	ommon			Lo	cation Deta			S	tatus		Pit Nu	nber
TŁ	Location: Letterke	nny, Lifford, Co. Donegal		Easting: Level:		Northi Depth	-)m	FT	NAI		ТР	8
TETRA TECH		Design Ltd		Logger:	JA	Type:					-		
		Hole Information					Groundv	ator				Sheet 1 Scale:	L of 1 1:25
	Pit Dimensions	Orientation: 87°		Strike (m)	Rose To (m)		vater er (mins)	Re	emarks		Checked By:	1:25
		Shoring: NONE										Approved By:	
	0.60m	Stability: STABLE										Start Date:	17/02/2022
	3.00m	Plant: TRACKED EXCAN	VATOR					-			Sample	Finish Date: and Testing	17/02/2022
	Strata D	escription		Legend	Depth (m	n) Reduced Level (mAOD)	Water Level (m)	Backfill	Denth (m)	Ref	Sample		
Sand is fine to co mudstone. TOP Light brown sligh Gravel is subrour	n slightly sandy slightly parse. Gravel is subroun htly gravelly silty fine to nded to subangular fine	gravelly SILT (TOPSOIL). Ided fine to medium of schis	schist.		0.30 2.00		Level (m)		Depth (m)	ES1		Tests / Results	
													5 -
Observations / Re No groundwater enc							·		·		1 Locks Montgo Belfast, BT6 9U 028 9070	IP	
												Project Numb 787-B0344	

APPENDIX D – SOIL AND WATER ASSESSMENT CRITERIA

SOIL - TIER ONE HUMAN HEALTH SCREENING VALUES (Northern Ireland)

Status WYG FINAL	F	Public Open Spa	ace (Park)	Issue No 16	Issue Date 23/05/17
		S	OIL ORGANIC MATT	ER	
		1%	2.5%	6%	SOURCE
Determinand	Units				
pH Asbestos	%		<5, >9 Presence		
HEAVY METALS/METALLOIDS Arsenic	mg/kg		170		CIEH/LQM S4ULs
Cadmium	mg/kg		532		CIEH/LQM S4ULs
Chromium (III) Chromium (VI)	mg/kg mg/kg		<u>33,000</u> 220		CIEH/LQM S4ULs CIEH/LQM S4ULs
Lead Note 12	mg/kg		1300		C4SL
Mercury (Elemental) Note 09 Mercury (Inorganic) Note 09	mg/kg		30 ^{vap} (25.8) 240		CIEH/LQM S4ULs CIEH/LQM S4ULs
Mercury (Methyl) Note 09	mg/kg mg/kg		68		CIEH/LQM S4ULs
Nickel	mg/kg		800		CIEH/LQM S4ULs
Selenium Berylium	mg/kg mg/kg		<u>1,800</u> 63		CIEH/LQM S4ULs CIEH/LQM S4ULs
Boron	mg/kg		46,000		CIEH/LQM S4ULs
Vanadium Copper	mg/kg mg/kg		<u>5,000</u> 44,000		CIEH/LQM S4ULs CIEH/LQM S4ULs
Zinc	mg/kg		170,000		CIEH/LQM S4ULs
GENERAL INORGANICS	┝─────┤				
Easily Liberatable Cyanide (free) Note 13	mg/kg		24		WYG Acute Effects to Infant 1 dose 5g of soil
US EPA PRIORITY PAHs					
Acenaphthene Acenaphthylene	mg/kg mg/kg	29,000 29,000	30,000 30,000	30,000 30,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
Anthracene	mg/kg	150,000	150,000	150,000	CIEH/LQM S4ULS
Benzo(a)anthracene	mg/kg	49	56	62	CIEH/LQM S4ULs
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	<u>13</u> 370	15 410	16 440	CIEH/LQM S4ULs CIEH/LQM S4ULs
Benzo(g,h,i)perylene	mg/kg	1400	1,500	1,600	CIEH/LQM S4ULs
Benzo(a)pyrene Chrysene	mg/kg mg/kg	<u>11</u> 93	12 110	13 120	CIEH/LQM S4ULs CIEH/LQM S4ULs
Di-benzo(a,h)anthracene	mg/kg	1.1	1.3	1.4	CIEH/LQM S4ULs
Fluoranthene Fluorene	mg/kg mg/kg	6,300 20,000	6,300 20,000	6,400 20,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
Indeno(1,2,3-cd)pyrene	mg/kg	150	170	180	CIEH/LQM S4ULs
Naphthalene	mg/kg	1,200 (76.4) ^{sol}	1,900 (183) ^{sol}	3,000	CIEH/LQM S4ULs
Phenanthrene Pyrene	mg/kg mg/kg	6,200 15,000	6,200 15,000	6,300 15,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
Chloroalkanes and alkenes 1,2-Dichloroethane (1,2 DCA)	mg/kg	21	24	28	CIEH/LQM S4ULs
1,1,1-Trichloroethane (1,1,1 TCA)	mg/kg	57,000 (1,425) ^{vap}	76,000 (2,915) ^{vap}	100,000 (6,392) ^{vap}	CIEH/LQM S4ULs
1,1,1,2-Tetrachloroethane (1,1,1,2 PCA) 1,1,2,2-Tetrachloroethane (1,1,2,2 PCA)	mg/kg mg/kg	<u>1,500</u> 1,800	1,800 2,100	2,100 2,300	CIEH/LQM S4ULs CIEH/LQM S4ULs
Tetrachloroethene (PCE)	mg/kg	810 (424) ^{sol}	1,100 (951) ^{sol}	1,500	CIEH/LQM S4ULs
Tetrachloromethane (Carbon Tetrachloride)	mg/kg	190 70	270 91	400 120	CIEH/LQM S4ULs CIEH/LQM S4ULs
Trichloroethene (TCE) Trichloromethane (Chloroform)	mg/kg mg/kg	2,600	2,800	3,100	CIEH/LQM S4ULs
Vinyl Chloride (VC)	mg/kg	4.8	5.0	5.4	CIEH/LQM S4ULs
Phenolics					
Phenol	mg/kg	440	690	1,300	CIEH/LQM S4ULs
Chlorophenols Pentachlorophenols	mg/kg mg/kg	<u>1,100</u> 110	1,100 120	1,100 120	CIEH/LQM S4ULs CIEH/LQM S4ULs
	ilig/kg	110	120	120	
TPH Note 10					
TPH Aliphatic >C5-6 TPH Aliphatic >C6-8	mg/kg mg/kg	95,000 (304) ^{sol} 150,000 (144) ^{sol}	130,000 (558) ^{sol} 220,000 (322) ^{sol}	180,000 (1,150) ^{sol} 320,000 (736) ^{sol}	CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aliphatic >C8-10	mg/kg	14,000 (78) ^{sol}	18,000 (190) ^{vap}	21,000 (451) ^{vap}	CIEH/LQM S4ULs
TPH Aliphatic >C10-12	mg/kg	21,000 (48) ^{sol}	23,000 (118) ^{vap}	24,000 (283) ^{vap}	CIEH/LQM S4ULs
TPH Aliphatic >C12-16 TPH Aliphatic >C16-35	mg/kg mg/kg	25,000 (24) ^{sol} 450,000	25,000 (59) ^{sol} 480,000	26,000 (142) ^{sol} 490,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aliphatic >C35-44	mg/kg	450,000	480,000	490,000	CIEH/LQM S4ULs
TPH Aromatic >EC5-7 (Benzene)	mg/kg	76000 (1220) ^{sol Note14}	84000 (2260) sol Note14	92000 (4710) ^{sol Note14}	CIEH/LQM S4ULs
TPH Aromatic >EC7-8 TPH Aromatic >EC8-10	mg/kg mg/kg	87,000 (869) ^{vap} 7,200 (613) ^{vap}	95,000 (1,920) ^{sol} 8,500 (1,500) ^{vap}	100,000 (4,360) ^{vap} 9,300 (3,580) ^{vap}	CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >EC8-10 TPH Aromatic >EC10-12	mg/kg mg/kg	9,200 (364) ^{vap}	9,700 (899) ^{sol}	<u>9,300 (3,580)</u>	CIEH/LQM S4ULs
TPH Aromatic >EC12-16	mg/kg	10,000	10,000	10,000	CIEH/LQM S4ULs
TPH Aromatic >EC16-21 TPH Aromatic >EC21-35	mg/kg mg/kg	7,600 7,800	7,700 7,800	7,800 7,900	CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >EC35-44	mg/kg	7,800	7,800	7,900	CIEH/LQM S4ULs
TPH Aliphatic & Aromatic >EC44-70 Total TPH	mg/kg mg/kg	7,800 No Sum	7,800 No Sum	7,900 No Sum	CIEH/LQM S4ULs
BTEX Benzene	mg/kg	90	100	110	CIEH/LQM S4ULs
Toluene	mg/kg	87,000 (869) ^{vap}	95,000 (1,920) ^{vap}	100,000 (4,360) ^{vap}	CIEH/LQM S4ULs
Ethylbenzene	mg/kg	17,000 (518) ^{vap}	22,000 (1,220) ^{vap}	27,000 (2,840) ^{vap}	CIEH/LQM S4ULs
m-Xylene o-Xylene	mg/kg mg/kg	17,000 (625) ^{vap} 17,000 (478) ^{sol}	24,000 (1,470) ^{vap} 24,000 (1,120) ^{vap}	32,000 (3,460) ^{vap} 33,000 (2,620) ^{sol}	CIEH/LQM S4ULs CIEH/LQM S4ULs
p-Xylene	mg/kg mg/kg	17,000 (478) ^{sol}	23,000 (1,120) ^{sol}	33,000 (2,620) ^{sol}	CIEH/LQM S4ULs
Xylenes (mixed isomers)	mg/kg	17,000 (478) ^{sol}	23,000 (1,350) ^{sol}	31,000 (3,170) ^{sol}	CIEH/LQM S4ULs
	<u> </u>	_			

SOIL - TIER ONE HUMAN HEALTH SCREENING VALUES (Northern Ireland)

Status					Issue Date
WYG FINAL	Public Open Space (Park)			16	23/05/17
Determinand	Units	SOIL ORGANIC MATTER			
		1%	2.5%	6%	SOURCE
Explosives					
2,4,6 - Trinitrotoluene	mg/kg	260	270	270	CIEH/LQM S4ULs
RDX and HMX	mg/kg	49,000 (18.7) ^{sol}	51,000	51,000	CIEH/LQM S4ULs
Pesticides					
Aldrin	mg/kg	30	31	31	CIEH/LQM S4ULs
Dieldrin	mg/kg	30	31	31	CIEH/LQM S4ULs
Atrazine	mg/kg	2,300	2,400	2,400	CIEH/LQM S4ULs
Dichlorvos	mg/kg	26	26	27	CIEH/LQM S4ULs
Alpha-Endosulfan	mg/kg	2,400	2,400	2,500	CIEH/LQM S4ULs
Beta-Endosulfan	mg/kg	2,400	2,400	2,500	CIEH/LQM S4ULs
Alpha-Hexachlorocyclohexane	mg/kg	47	48	48	CIEH/LQM S4ULs
Beta-Hexachlorocyclohexane	mg/kg	15	15	16	CIEH/LQM S4ULs
Gamma-Hexachlorocyclohexane	mg/kg	14	15	15	CIEH/LQM S4ULs
Chlorobenzenes					
Chlorobenzene	mg/kg	1,300 (675) ^{sol}	2,000 (1,520) ^{sol}	2,900	CIEH/LQM S4ULs
1.2-Dichlorobenzene	mg/kg	24,000 (571) ^{sol}	36,000 (1,370) ^{sol}	51,000 (3,240) ^{sol}	CIEH/LQM S4ULs
1,3-Dichlorobenzene	mg/kg	390	440	470	CIEH/LQM S4ULs
1,4-Dichlorobenzene	mg/kg	36,000 (224) ^{vap}	36,000 (540) ^{vap}	36,000 (1,280) ^{vap}	CIEH/LQM S4ULs
1,2,3-Trichlorobenzenes	mg/kg	770 (134) ^{vap}	1,100 (330) ^{vap}	1,600 (789) ^{vap}	CIEH/LQM S4ULs
1,2,4-Trichlorobenzenes	mg/kg	1,700 (318) ^{vap}	2,600 (786) ^{vap}	4,000 (1,880) ^{vap}	CIEH/LQM S4ULs
1,3,5-Trichlorobenzenes	mg/kg	380 (36.7) ^{vap}	580 (90.8) ^{vap}	860 (217) ^{vap}	CIEH/LQM S4ULs
1,2,3,4-Tetrachlorobenzene	mg/kg	1,500 (122) ^{vap}	1,600	1,600	CIEH/LQM S4ULs
1,2,3,5-Tetrachlorobenzene	mg/kg	1,500 (122) 110 (39) ^{vap}	1,800	130	CIEH/LQM S4ULS
1,2,3,5-Tetrachlorobenzene	mg/kg	25	26	26	CIEH/LQM S4ULS CIEH/LQM S4ULs
Pentachlorobenzene	mg/kg	190	190	190	CIEH/LQM S40LS
Hexachlorobenzene	mg/kg	30	30	30	CIEH/LQM S4ULs
Other					
Carbon Disulphide	mg/kg	1,300	1,900	2,700	CIEH/LQM S4ULs
Hexachlorobutadiene	mg/kg	48	50	51	CIEH/LQM S4ULs

NOTES

1) Compare individual samples values against Soil Screening Values (SSV). If exceedences are identified this will signify a potential human health risk and will warrant further consideration. If in doubt regarding next steps discuss with Project Manager and / or member of the WYG QRA Group.

2) These values are for initial screening of potential risk to human health only. They are not remediation thresholds. Assessment of risk to other receptors to be completed separately as appropriate for the site, e.g. for water, ecology, building materials.

3) Where the SSV exceeds saturation limits, (derived in CLEA by using partitioning equations) the saturation limit is given in brackets.

Further background information on the derivation and implication of saturation limits is provided in Section 4.12 of the CLEA Software Handbook (SR4).

a) sol - S4UL exceeds soil saturation limit which is given in brackets (Note that if soil data exceeds the solubility limit, free product may be present)

b) vap - S4UL exceeds vapour saturation limit which is given in brackets

For screening consider applicability of both solubility limit and SSV.

4) Screening criteria denoted with hash (#) were capped at 1000000mg/kg, the maximum theoretical value.

5) SSVs are provided for a select range of more commonly encountered chemical constituents listed above. For VOC and SVOC not listed above refer to CL:AIRE "Soil Generic Assessment Criteria for Human Health Risk Assessment" January 2010. If screening criteria are required for other chemical constituents, contact a member of the WYG QRA group.

6) SSVs derived for certain constituents may be low in relation to standard laboratory Limits of Detection (LoD). It is advised that the Project Team check that laboratory limits of detection are sufficient to permit comparison of soil data with screening criteria. Ideally the LoD should be no more than 10% of the screening criteria noting though that this is not practicable for all constituents.

7) SSVs were calculated using a Soil Organic Matter (SOM) values of 1.0%, 2.5% and 6%. This is equivalent to a Fraction Organic Carbon (FOC) values of approx. 0.006, 0.0145 and 0.035 respectively (For reference FOC = 0.58*SOM/100). Note that some soils may have SOM lower than 1.0%; in these situations it may be appropriate to consider derivation of alternative screening criteria using the CLEA software. If in doubt discuss with Project Manager and / or member of the WYG QRA Group.

8) In general, SSVs have been rounded down to 2 significant figures.

9) Use Mercury (Inorganic) SSV for Mercury unless evidence suggesting elemental or methyl mercury may be present.

10) For sites with a known TPH issue it may be of benefit to determine the TPH Hazard Index (EA Science Report P5-080/TR3 2005). For a given soil sample first divide each TPH fraction concentration by the SSV of that TPH fraction. This gives the Hazard Quotient for the TPH fraction. Then sum all the Hazard Quotients together for the soil sample to give the Hazard Index. A Hazard Index > 1 respresents a potentially significant risk to human health. Alternatively this can be done using the CLEA Model by entering the TPH source concentrations for individe fractions and running the model in ratio mode. If required seek advice from a member of the WYG QRA Group.

11) Definition of scenario in CL:AIRE SP1010 C4SL Main Report in section 3.6.

12) The TSV for lead is the C4SL derived using a Low Level of Toxicological Concern (LLTC) of 3.5ug/dL blood lead.

13) See WYG Technical Memorandum: Derivation of a SSV for Cyanide for explanation of deriviation

14) Variation of S4ULs for benzene and TPH Aromatic >EC5-7 (Benzene) is due to the health criteria value (HCV) applied in each case. The HCV for benzene is based on its non threshold (carcinogenic) effects, whereas that for Aromatic >EC5-7 is for threshold (see section 17.3.5 S4UL Document). The latter is intended to allow the additive effect from this fraction to be considered together with the threshold effects of all other fractions, however individual assessments for the indicator compounds (e.g. benzene), are also required.

WYG Tier 1 Water Quality Standard

Receiving Water	Status	Issue No.	Date of Release
Groundwater	DRAFT	1D	20/04/2012

All criteria are sourced from The River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) (England and Wales) Directions 2010 unless otherwise stated.

Determinand	Groundwater Impacts on Surface Water (minimun threshold value)	Value (µg/l) Groundwater Drinking Water Protected Areas	General Quality of Groundwater Body	Notes
Electrical Conductivity (µS/cm)		1,880 (µS/cm)		
Aluminium		150		
Ammonia	300	290	290	
Anthracene	0.1			
Arsenic	51.6	7.5		
Bentazone	514	0.075	0.075	Herbicide
Benzene	10.1	0.75	0.75	
Benzo(a)pyrene	1011	0.075	000	
Boron		750		
Bromate		7.5	7.5	
Cadmium	0.2	3.75	7.5	
Carbendazim	0.2	0.075		Fungicide
				Herbicide
Carbetamide	12.1	0.075	2.25	
Carbon tetrachloride	12.1	2.25	2.25	Tetrachloromethane, freon 10, halon 104
Chloride (water soluble)		188,000	187,500	Tana Matuk
Chlorfenvinphos	0.1	0.075	0.075	Insecticide
Chloroform	2.53	75	75	Trichloromethane
Chlorotoluron		0.075		
Chromium	5	37.5		
Clopyralid		0.075		Herbicide
Copper	10.1	1,500		
Cyanazine		0.075		Herbicide
Cypermethrin	0.0001	0.075	0.075	Insecticide
Dalapon		0.075		Herbicide
Diazinon	0.01	0.075	0.075	Insecticide
Dichlorobenzenes		2.25	2.25	Sum of all isomers
Dichloromethane	20.7	7.5		
Dichlorprop		75		Herbicide
Diuron	0.2	0.075	0.075	Herbicide
Fluoranthene	0.1	01075	01075	Terblede
Fluoride	0.1	1.1		
Glyphosate		0.075		Herbicide
Isoproturon	0.3	0.075	0.075	Algicide, herbicide
Lead	7.3	18.8	0.075	Algicide, hel bicide
	7.5			0.1521.
МСРА	5.4	0.075	0.075	Herbicide
Mecoprop	5.1	0.075	0.075	Herbicide
Mercury		0.75		
Metazachlor		0.075		Herbicide
Naphthalene	2.4			
Nickel	20.2	15		
Nitrate		42,000	42,000	
Pentachlorophenol	0.4	0.075	0.075	
Permethrin	0.01	0.075	0.075	cis and trans, insecticide, acaricide
Phenol	15.2	7.5		
Phosphate	41.4			
Propazine		0.075		Herbicide
Propetamphos	1	0.075	0.075	Insecticide, acaracide
Simazine	1	0.075	0.075	Herbicide
Sodium		133,000		
Sulphate		188,000	188,000	
Terbutryn		0.075	100,000	Algicide, herbicide
Tetrachloroethene	10.1	7.5	7.5	Aigicide, herbicide
Toluene	50.5	1.3	7.3	ł
	10.1	7.5	7.5	
Trichloroethene		7.5		
1,1,1-trichloroethane	101		7.5	
1,1,2-trichloroethane	404	0.075	7.5	
Trietazine		0.075		Herbicide
Trifluralin		0.075		Herbicide
Xylene	30.3		37.5	
Zinc	75.8	3,750		

WYG Tier 1 Water Quality Standard

Receiving Water	Issue No.	Date of Release
Transitional, Coastal & Marine	1D	20/04/2012

All criteria are sourced from The Water Framework Directive (Priority Substances and Classification) Regulations (Northern Ireland) 2011 unless otherwise stated.

Determinand	Value (µg/l)	Origin of TSV	Notes
Abamectin	0.003	Saltwater Annual Average	Notes
Un-ionised ammonia (as N)	21	Annual Mean	Good quality transitional and coastal waters
anthracene (NI)	0.1	Annual Mean	Good quality transitional and coastal waters
	0.1		
Arsenic	25	Annual Mean	Good quality transitional and coastal waters
Benzene (NI)	8	Annual Mean	Good quality transitional and coastal waters
cadmuim	0.2	Annual Mean	Good quality transitional and coastal waters
Chlorine (northern ireland)	10	95th percentile	Good quality transitional and coastal waters
Chromium VI (dissolved)	0.6	Annual Mean	Good quality transitional and coastal waters
Copper (dissolved)	5	Annual Mean	Good quality transitional and coastal waters
Cyanide	1	Annual mean concentration of hydrogen cyanide	Good quality transitional and coastal waters
Cypermethrin	0.0001	Annual Mean	Good quality transitional and coastal waters
Diazinon	0.01	Annual Mean	Good quality transitional and coastal waters
2,4-dichlorophenol	20	Annual Mean	Good quality transitional and coastal waters
Dimethoate	0.48	Annual Mean	Good quality transitional and coastal waters
Iron (dissolved)	1000	Annual Mean	Good quality transitional and coastal waters
Linuron	0.5	Annual Mean	Good quality transitional and coastal waters
Месоргор	18	Annual Mean	Good quality transitional and coastal waters
Permethrin	0.01	95%ile	Good quality transitional and coastal waters
Phenol	7.7	Annual Mean	Good quality transitional and coastal waters
Toluene	40	Annual Mean	Good quality transitional and coastal waters
Zinc	40	Annual Mean	Good quality transitional and coastal waters
Carbontetrachloride	12	Annual Mean	Good quality transitional and coastal waters
C10-13 Chloroalkanes	0.4	Annual Mean	Good quality transitional and coastal waters
Cyclodiene pesticides: Aldrin, Dieldrin, E	0.005	Annual Mean	Good quality transitional and coastal waters
DDT	0.025	Annual Mean	Good quality transitional and coastal waters
ppDDT	0.01	Annual Mean	Good quality transitional and coastal waters
1,2 - Dichloroethane	10	Annual Mean	Good quality transitional and coastal waters
Dichloromethane	20	Annual Mean	Good quality transitional and coastal waters
Di(2-ethylhexyl)-phthalate (DEHP	1.3	Annual Mean	Good quality transitional and coastal waters
Fluoranthene	0.1	Annual Mean	Good quality transitional and coastal waters
Hexachloro_benzene	0.01	Annual Mean	Good quality transitional and coastal waters
Hexachloro_butadiene	0.01	Annual Mean	Good quality transitional and coastal waters
hexachloro-cylohexane	0.002	Annual Mean	Good quality transitional and coastal waters
isoproturon	0.3	Annual Mean	Good quality transitional and coastal waters
Lead	7.2	Annual Mean	Good quality transitional and coastal waters
Mercury	0.05	Annual Mean	Good quality transitional and coastal waters
naphthalene	1.2	Annual Mean	Good quality transitional and coastal waters
nickel	20	Annual Mean	Good quality transitional and coastal waters
Nonylphenol	0.3	Annual Mean	Good quality transitional and coastal waters
Pentachloro-benzene	0.0007	Annual Mean	Good quality transitional and coastal waters
Pentachloro-phenol	1	Annual Mean	Good quality transitional and coastal waters
benzo(a)pyrene	0.05	Annual Mean	Good quality transitional and coastal waters
Benzo(b&k)fluoranthanene	0.03	Annual Mean	Good quality transitional and coastal waters
benzo(ghi)pyrene & indeno(1,2,3-cd)pyr	0.002	Annual Mean	Good quality transitional and coastal waters
Simazine	1	Annual Mean	Good quality transitional and coastal waters
Tetrachloroethylene	10	Annual Mean	Good quality transitional and coastal waters
tricholorethylene	10	Annual Mean	Good quality transitional and coastal waters
Tributlytin compounds	0.0002	Annual Mean	Good quality transitional and coastal waters
trichlorobenzene	0.4	Annual Mean	Good quality transitional and coastal waters
Trichloromethane	2.5	Annual Mean	Good quality transitional and coastal waters
Trifluralin	0.03	Annual Mean	Good quality transitional and coastal waters
2-chlorophenol	50	Annual Mean	Good quality transitional and coastal waters
Biphenyl	25	Annual Mean	Good quality transitional and coastal waters
1,1,1-trichloroehane	100	Annual Mean	Good quality transitional and coastal waters
1,1,2-trichloroethane	300	Annual Mean	Good quality transitional and coastal waters
xylene	30	Annual Mean	Good quality transitional and coastal waters

WYG Tier 1 Water Quality Standard

Receiving Water	Status	Issue No.	Date of Release
Freshwater	DRAFT	1D	01/02/2012

Freshwater includes inland surface waters, lakes, rivers etc

All criteria are sourced from The Water Framework Directive (Priority Substances and Classification) Regulations (Northern Ireland) 2011 unless

Determinand	Value (µg/l)	Origin of TSV	Notes
рН	>6-<9		
Abamectin	0.01	Annual Average	
Alachlor	0.3	AA-EQS	
Ammonium (as NH4)	See Miscellaneous Worksheet		
Anthracene	0.1	AA-EQS	
Arsenic	50	Annual Mean	Good standard for rivers and freshwater lakes
Atrazine	0.6	AA-EQS	
Bentazone	500	AA-EQS	
Benzene	10	AA-EQS	
Benzo(a)pyrene	0.05	AA-EQS	
Benzo (b&k)fluorahthene (NI)	0.03	AA-EQS	
Biphenyl	25	AA-EQS	
Brominated diphenylether	0.0005	AA-EQS	
C10-13 chloroalkanes	0.4	AA-EQS	
Cadmium (and its compounds)	0.08	Inland Surface Waters	
Carbon tetrachloride	12	AA-EQS	
Chlorine	2	Annual Mean	Good standard for rivers and freshwater lakes
Chlorvinphos	0.1	AA-EQS	
-chloro-3-methyl-phenol	40	AA-EQS	
Chloronitrotoluenes	10	AA-EQS	
2-chlorophenol	50	AA-EQS	
Chlorpyrifos	0.03	AA-EQS	
Chromium III	4.7	Annual mean concentration of dissolved	Good standard for rivers and freshwater lakes
Chromium VI	3.4	Annual mean concentration of dissolved	Good standard for rivers and freshwater lakes
	1 CaCO ₃ 0 - 50 mg/l		
	6 CaCO ₃ 50 - 100 mg/l		
Copper	10 CaCO ₃ 100 - 250 mg/l	Good standard for rivers and freshwater lakes	
		4	
Denida	28 CaCO ₃ >250 mg/l	Annual many second set (1) (1) (1)	
Cyanide	1	Annual mean concentration of hydrogen cyanide	Good standard for rivers and freshwater lakes
Cyclodiene pesticides	0.0001	AA-EQS	Sum of aldrin, dieldrin, endrin and isodrin
Cypermethrin	0.1	Annual Mean	Good standard for rivers and freshwater lakes
,4-D (2,4-dichlorophenoxyacetic acid)	0.3	Annual Mean	
DDT (Total all 4 isomers)	0.025	Annual Mean	
pDDT	0.01	Annual Mean	
Diazinon	0.01	Annual Mean	
,2-dichloroethane	10	Annual Mean	
Dichloromethane	20	Annual Mean	
2,4-dichlorophenol	20	Annual Mean	
Di(2ethylhexyl)phthalate	1.3	AA-EQS	
Dichlorvos	0.001	AA-EQS	
Dimethoate	0.48	Annual Mean	
Diuron	0.2	AA-EQS	
Endosulphan	0.005	AA-EQS	
	0.005	AA-EQS AA-EQS	
enitrothion			
luoranthene	0.1	AA-EQS	
lexachlorobenzene	0.01	AA-EQS	
lexachlorobutadiene	0.1	AA-EQS	
lexachlorocyclohexane	0.02	AA-EQS	
ron (dissolved)	1,000	Annual Mean	
soproturon	0.3	AA-EQS	
ead (Dissolved)	7.2	AA-EQS	
inuron	0.5	Annual Mean	
1ecoprop	18	Annual Mean	
fercury (and its compounds)	0.05	AA-EQS	
Japhthalene	2.4	AA-EQS	
lickel (Dissolved) (and its compounds)	20	AA-EQS	
lonylphenol	0.3	AA-EQS	
Dctylphenol	0.1	AA-EQS AA-EQS	
AH: sum of benzo(b)fluoranthene and			
penzo(k)fluoranthene	0.03	AA-EQS	
PAH: sum of benzo(g,h,i)perylene and		-	
	0.002	AA-EQS	
ndeno(1,2,3-cd)pyrene			
Pentachloro-benzene (NI)	0.007	AA-EQS	
Pentachloro-phenol (NI)	0.4	AA-EQS	
Permethrin	0.01	95%ile	
Phenol	7.7	Annual Mean	
limazine	1	AA-EQS	
etrachloroethylene	10	AA-EQS	
oluene	50	Annual Mean	
ributyltin compounds	0.0002	AA-EQS	
richlorobenzenes	0.4	AA-EQS	
,1,1-trichloroethane	100	AA-EQS	
,1,2-trichloroethane	400	AA-EQS	
richloroethylene	10	AA-EQS	
richloromethane	2.5	AA-EQS	
	0.03	AA-EQS AA-EQS	
rifluralin riphenyltin and its derivatives	0.03		
THE ADDRESS ADDRES		AA-EQS AA-EQS	
	30		
Kylene	8 CaCO ₃ 0 - 50 mg/l		
(ylene	8 CaCO ₃ 0 - 50 mg/l 50 CaCO ₃ 50 - 100 mg/l	-	
	8 CaCO ₃ 0 - 50 mg/l	Good standard for rivers and freshwater lakes	

APPENDIX E – GAS ASSESSMENT CRITERIA

Wilson & Card Method for Classifying Gassing Sites

Characteristic Situation (CIRIA R149)	Comparable Partners in Technology Gas Regime	Gas Screening Value (CH4 or CO2) (l/hr)1	Additional limiting factors	Typical source of generation
1	A	<0.07	Typically methane $\leq 1\%$ and or carbon dioxide =/ >5% otherwise consider increasing to situation 2.	Natural soils with low organic content
2	В	<0.7	Borehole air flow rate not to exceed 70l/hr otherwise increase to characteristic situation3	Natural soil, high peat/organic content
3	С	<3.5		Old landfill, inert waste, mine working flooded
4	D	<15	Quantitative risk assessment required to evaluate scope of protection measures	Mine working – susceptible to flooding, completed landfill, inert waste (WMP 26B criteria)
5	E	<70		Mine working unflooded inactive
6	F	>70		Recent landfill site

Notes:

Gas screening value: litres of gas/hour is calculated by multiplying the gas concentration (%) by the measured borehole flow rate (l/h)

Site characteristics should be based on gas monitoring of gas concentrations and borehole flow rates for specified minimum periods in table 5.5 of the CIRIA guidance

Source of gas and generation potential/performance must be identified

Soil gas investigation to be in accordance with guidance provided in chapters 4-6 of CIRIA guidance.

If there is not a detectable flow use the limit of detection of the instrument.

The boundaries between the Partners in Technology classification do not fit exactly with the boundaries for the CIRIA classification.

APPENDIX F - SOIL AND WATER SCREENING ASSESSMENT

Soil Analysis Screening Assessment

Contaminant GAC	Public Open Space near residential housing	BH1	BH2	BH3	TP1	TP3	TP4	TP6	TP7	TP7
	Depth(m)	0.50	1.00	1.00	0.50	0.50	1.50	1.50	0.50	1.50
Heavy Metals	mg/kg									
Arsenic	79	15.80	6.90	8.20	4.00	5.80	NA	NA	7.00	NA
Cadmium	120	<0.1	<0.1	<0.1	<0.1	<0.1	NA	NA	<0.1	NA
Chromium	NA	74.40	82.50	89.50	74.80	68.40	NA	NA	82.40	NA
Chromium III	1500	74.40	82.50	89.50	74.80	68.40	NA NA	NA	82.40	NA
Chromium VI	7.7 12000	<0.3 19.00	<0.3 95.00	<0.3 39.00	<0.3 18.00	<0.3 14.00	NA	NA NA	<0.3 25.00	NA NA
Copper		0.10			<0.1		NA	NA	0.10	NA
Inorganic Mercury	120	_	<0.1	<0.1		<0.1				
Nickel	230	31.10	53.70	46.00	26.30	15.20	NA	NA	29.30	NA
Lead	630	20.00	16.00	15.00	25.00	20.00	NA	NA	24.00	NA
Selenium	1100	1.00	<1	<1	<1	1.00	NA	NA	1.00	NA
Zinc	81000	73.00	65.00	80.00	71.00	38.00	NA	NA	64.00	NA
Vanadium	2000	69.00	48.00	49.00	34.00	41.00	NA	NA	47.00	NA
Beryllium	2.2	1.00	0.70	0.70	< 0.5	<0.5	NA	NA	0.50	NA
Boron	21000	0.90	0.10	0.10	0.10	0.40	NA	NA	0.30	NA
Phenolics		0.45	0.15	0.45	0.45	0.45		NIA	0.45	
Phenol	440	<0.15	<0.15	<0.15	<0.15	<0.15	NA	NA	<0.15	NA
Total Petroleum Hydrocarbons Aliphatics	-									
EC>C5-C6	570000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EC>C6-C8	600000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EC>C8-C10	13000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EC>C10-C12	13000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EC>C12-C16	13000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
EC>C16-C21	250000	<7	<7	<7	<7	<7	<7	<7	<7	<7
EC>C21-C35	250000	<7	<7	<7	<7	<7	<7	<7	<7	<7
EC>C35-C44	250000	<7	<7	<7	<7	<7	<7	<7	<7	<7
Total aliphatics	NA	<26	<26	<26	<26	<26	<26	<26	<26	<26
Aromatics	-									
EC 5-7 (benzene)	56000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EC>C7-C8 (toluene)	56000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EC>C8-C10	5000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EC>C10-C12	5000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
EC>C12-C16	5100	<4	<4	<4	<4	<4	<4	<4	<4	<4
EC>C16-C21	3800	<7	<7	<7	<7	<7	<7	<7	<7	<7
EC>C21-C35	3800	<7	<7	<7	<7	<7	<7	<7	<7	<7
EC>C35-C44	3800	<7	<7	<7	<7	<7	<7	<7	<7	<7
Total aromatics	NA	<26	<26	<26	<26	<26	<26	<26	<26	<26
Total Aliphatics and Aromatics	NA	<52	<52	<52	<52	<52	<52	<52	<52	<52
BTEX/MTBE										
MTBE	NA	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Benzene	72	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
Toluene	56000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Ethylbenzene	24000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
m&p-xylene	41000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
o-xylene Polycyclic Aromatic Hydrocarbons	41000	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Naphthalene	4900	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Acenaphthylene	15000	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Acenaphthene	15000	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Fluorene	9900	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Phenanthrene	3100	<0.03	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Anthracene	74000	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	< 0.03
Fluoranthene	3100	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03
Pyrene	7400	<0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03
Benz(a)anthracene	29	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Chrysene	57	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
Benzo(b)fluoranthene	7.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	190	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02
Benzo(a)pyrene	5.7	< 0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.04
Indeno(123cd)pyrene	82	< 0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.04
Dibenz(a,h)anthracene	0.6	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Benzo(ghi)perylene	640	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
PAH 16 Total	NA	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Inorganics										
pH (pH Units)	<5, >9	4.52	6.72	6.71	6.21	6.18	NA	NA	5.90	NA
Sulphate (2:1 Water Soluble) as SO4 (g/l)		0.087	0.020	0.007	0.007	0.0	NA	NA	0.0	NA
Free Cyanide	36	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	<0.5	NA
Asbestos Screening Present/Absent	NA	Absent	Absent	Absent	Absent	Absent	NA	NA	Absent	NA
0000										
ORGANICS Fraction Organic Carbon	NA	0.02	0.00	<0.001	0.00	0.01	NA	NA	0.01	NA

GACs are the LQM S4ULs with 1% SOM with the exception of those listed below:-1. The GAC for lead is the C4SL derived using a Low Level of Toxicological Concern (LLTC) of 3.5ug/dL blood lead. 2. Free Cyanide - WYG derived using CLEA. See WYG Technical Memorandum: Derivation of a SSV.

Groundwater Analysis Screening Assessment

Sample Point / Determinds	TSV	SOBRA Commercial GACgwvap	BH1	BH2	BH3
HEAVY METALS	μg/l	µg/l	GW	SW	sw
Antimony	5 (5)		<2	<2	<2
Barium	100 (4)	-	61	49	45
Beryllium	-	-	<0.5	<0.5	<0.5
Arsenic	50 (1), 50 (4), 7.5 (6)	-	<2.5	<2.5	<2.5
Boron	-	-	49	19	15
Cadmium	0.08 (1), 5 (4)	-	< 0.5	<0.5	< 0.5
Chromium (total)	<u>37.5 (6)</u> 10 (1)	-	<1.5 <7	<1.5 <7	5.1 11
Copper Lead	7.2 (1), 7.5 (6)	-	<5	<5	6
Mercury	0.05 (1), 1 (4), 0.75 (6)	-	<1	<1	<1
Molybdenum	-	-	<2	<2	<2
Nickel	20 (1)	-	5	7	15
Selenium	-	-	<3	<3	<3
Zinc	75 (1), <mark>75 (6)</mark>	-	14	8	22
Phenols	μg/l				
Total Phenols	-	-	<0.15	< 0.15	< 0.15
Speciated TPH	μg/l				
Aliphatics					
EC C5-C6	15000(7)	190000	<10	<10	<10
EC>C6-C8	15000(7)	150000	<10	<10	<10
EC>C8-C10 EC>C10-C12	<u>300(7)</u> 300(7)	5700 3600	<10	<10	<10
EC>C10-C12 EC>C12-C16	300(7) 300(7)	- 3600	<5 <10	<5 <10	<5 <10
EC>C16-C21		-	<10	<10	<10
EC>C21-C35	-	-	<10	<10	<10
Total Aliphatics >C5-C35	-	-	<10	<10	<10
Aromatics					
EC C5-C7	10(7)	2000000	<10	<10	<10
EC>C7-C8	700(7)	21000000	<10	<10	<10
EC>C8-C10	300(7)	190000	<10	<10	<10
EC>C10-C12	90(7)	660000	<5	<5	<5
EC>C12-C16	90(7)	3700000	<10	<10	<10
EC>C16-C21	90(7)	-	<10	<10	<10
EC>C21-C35	90(7)	-	<10	<10	<10
Total Aromatics >EC5-EC35 al Aliphatics & Aromatics >C5-C35	-	-	<10 <10	<10 <10	<10 <10
BTEX	 µg/I	-	<10	<10	<10
Benzene	10 (1), 0.75 (3), 30 (4), 0.75 (6)	20000	<5	<5	<5
Toluene	50 (1), 525 (3), 50 (4), 525 (6)	21000000	<5	<5	<5
Ethylbenzene	20 (4)	960000	<5	<5	<5
p/m-Xylene		940000	<5	<5	<5
o-Xylene		1100000	<5	<5	<5
Polyaromatic Hydrocabons	μg/l				
Acenaphthene (aq)	-	1500000	0.026	< 0.005	< 0.00
Acenaphthylene (aq)	-	2000000	< 0.005	< 0.005	< 0.00
Anthracene (aq)	0.1 (1), 0.1 (4)	-	<0.005 <0.005	<0.005 <0.005	<0.00 <0.00
Benzo(a)anthracene (aq) Benzo(a)pyrene (aq)	 0.05 (1), 0.03 (4) , 0.0075 (6)		< 0.005	< 0.005	<0.00
Benzo(b)fluoranthene (aq)	-	-	<0.003	<0.003	<0.00
Benzo(g,h,i)perylene (aq)	-	-	< 0.005	< 0.005	< 0.00
Benzo(k)fluoranthene (aq)	-	-	<0.003	<0.005	< 0.00
Chrysene (aq)	-	-	< 0.005	< 0.005	< 0.00
Dibenzo(a,h)anthracene (aq)	-	-	< 0.005	< 0.005	< 0.00
Fluoranthene (aq)	0.1 (1), 0.02 (4)	-	0.009	< 0.005	< 0.00
Fluorene (aq)	-	18000000	0.02	<0.005	< 0.00
	-		<0.005	< 0.005	< 0.00
Indeno(1,2,3-cd)pyrene (aq)	2.4 (1), 10 (4)	23000	0.4	<0.1	<0.1
Naphthalene (aq)		-	0.022	0.006	< 0.00
Naphthalene (aq) Phenanthrene (aq)	-			< 0.005	< 0.00
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq)	-	-	0.007		
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq)			0.007 0.484	<0.173	
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS		-	0.484	<0.173	<0.17
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate			0.484 93.9	<0.173 61.3	<0.17 13.6
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate Chloride		-	0.484 93.9 24.1	<0.173 61.3 40.8	<0.173 13.6 11.5
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate Chloride Nitrate NO ₃		- - - - -	0.484 93.9 24.1 3.5	<0.173 61.3 40.8 0.4	<0.17 13.6 11.5 5.4
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate Chloride Nitrate NO ₃ Nitrite NO ₂		- - - - - -	0.484 93.9 24.1 3.5 <0.02	<0.173 61.3 40.8 0.4 <0.02	<0.17 13.6 11.5 5.4 <0.02
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate Chloride Nitrate NO ₃ Nitrite NO ₂ Ammoniacal Nitrogen as NH3		- - - - - - - -	0.484 93.9 24.1 3.5 <0.02 10.88	<0.173 61.3 40.8 0.4 <0.02 0.11	<0.17 13.6 11.5 5.4 <0.02 0.05
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate Chloride Nitrate NO ₃ Nitrite NO ₂ Ammoniacal Nitrogen as NH3 Ammoniacal Nitrogen as NH4		- - - - - - - -	0.484 93.9 24.1 3.5 <0.02 10.88 11.52	<0.173 61.3 40.8 0.4 <0.02 0.11 0.12	<0.17 13.6 11.5 5.4 <0.02 0.05 0.05
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate Chloride Nitrate NO ₃ Nitrite NO ₂ Ammoniacal Nitrogen as NH3 Ammoniacal Nitrogen as NH4 Total Cyanide		- - - - - - - - - - -	0.484 93.9 24.1 3.5 <0.02 10.88 11.52 <0.01	<0.173 61.3 40.8 0.4 <0.02 0.11 0.12 <0.01	<0.173 13.6 11.5 5.4 <0.02 0.05 0.05 <0.01
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate Chloride Nitrate NO ₃ Nitrite NO2 Ammoniacal Nitrogen as NH3 Ammoniacal Nitrogen as NH4 Total Cyanide Dissolved Organic Carbon		- - - - - - - - - - - -	0.484 93.9 24.1 3.5 <0.02 10.88 11.52 <0.01 7	<0.173 61.3 40.8 0.4 <0.02 0.11 0.12 <0.01 8	<0.17 13.6 11.5 5.4 <0.02 0.05 0.05 <0.01 4
Naphthalene (aq) Phenanthrene (aq) Pyrene (aq) PAH, Total USEPA 16 (aq) INORGANICS Sulphate Chloride Nitrate NO ₃ Nitrite NO ₂ Ammoniacal Nitrogen as NH3 Ammoniacal Nitrogen as NH4 Total Cyanide		- - - - - - - - - - -	0.484 93.9 24.1 3.5 <0.02 10.88 11.52 <0.01	<0.173 61.3 40.8 0.4 <0.02 0.11 0.12 <0.01	<0.173 13.6 11.5 5.4 <0.02 0.05 0.05 <0.01

4. Freshwater EQS (AA)

UK Drinking Water Standard

, uaity of groundwater in a groundwater body in terms of whether its ability to support human uses has been on - - European Union Environmental Objectives (Groundwater) (Amendment) Regulations 2016.

WHO guide values as per CL:AIRE 2017 Petroleim hydrocarbons in groundwater

. WHO Guidelines for Drinking Water Quality. Third edition (2004)

*Total PAH = Sum of 4:-

Benzo(b) & (k)fluoranthene

Indeno(123cd)pyrene Benzo(ghi)perylene

9. WFD UK Standard Protection of Surface Water Quality

10. UK Non-statutory EQSs Council Directive on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (Dangerous Substances Directive) - List II substances #. AQC failure, accreditation has been removed from this result.

Result outside calibration range, results should be considered as indicative only and are not accredited.

APPENDIX G – GROUND GAS MONITORING DATA AND SCREENING ASSESSMENT

Monitoring Round 1 - 25/02/2021 - NOTE: No H2S filter used

Weather Rainy

Ambient Conditions	Barometric Pressure	CH₄	C0 ₂	O ₂
Before Monitoring	1013	0	0.1	20.9
After Monitoring	1013	0	0.1	20.9

BH01

Time (sec)	CH ₄ (%)	C0 ₂ (%)	0 ₂ (%)	H₂S(ppm)	C0(ppm)	Barometric pressure (mb)	Positive Flow I/h	Limiting Value CH ₄	Limiting value CO ₂	Characteristic Situation (Wilson & Card)
30	0.50	9.20	18.8	0.00	1.00	1013	16.8	0.084	1.546	3
60	0.50	9.20	18.9	0.00	1.00	1013	16.8	0.084	1.546	3
90	0.50	9.20	18.9	0.00	1.00	1013	16.8	0.084	1.546	3
120	0.50	9.10	18.9	0.00	1.00	1013	16.8	0.084	1.529	3
150	0.50	9.00	20.0	0.00	1.00	1013	16.8	0.084	1.512	3
180	0.50	9.00	20.0	0.00	1.00	1013	16.8	0.084	1.512	3
210	0.50	9.00	20.0	0.00	1.00	1013	16.8	0.084	1.512	3
240	0.50	9.00	20.0	0.00	1.00	1013	16.8	0.084	1.512	3
270	0.50	9.00	20.0	0.00	1.00	1013	16.8	0.084	1.512	3
300	0.50	9.00	20.0	0.00	1.00	1013	16.8	0.084	1.512	3

Water	m
depth to top of water (m)	0.05
depth to bottom of borehole (m)	4.69

BH02

Time (sec)	CH ₄ (%)	C0 ₂ (%)	0 ₂ (%)	H₂S(ppm)	C0(ppm)	Barometric pressure (mb)	Positive Flow I/h	Limiting Value CH_4	Limiting value CO ₂	Characteristic Situation (Wilson & Card)
30	0.20	3.60	20.5	0.00	2.00	1013	2.8	0.006	0.101	2
60	0.20	3.60	20.3	0.00	2.00	1013	2.8	0.006	0.101	2
90	0.20	3.60	20.3	0.00	1.00	1013	2.8	0.006	0.101	2
120	0.20	3.60	20.3	0.00	1.00	1013	2.8	0.006	0.101	2
150	0.20	3.60	20.3	0.00	1.00	1013	2.8	0.006	0.101	2
180	0.20	3.60	20.3	0.00	1.00	1013	2.8	0.006	0.101	2
210	0.20	3.60	20.3	0.00	1.00	1013	2.8	0.006	0.101	2
240	0.20	3.60	20.3	0.00	1.00	1013	2.8	0.006	0.101	2
270	0.20	3.60	20.3	0.00	1.00	1013	2.8	0.006	0.101	2
300	0.20	3.60	20.3	0.00	1.00	1013	2.8	0.006	0.101	2

Water	m
depth to top of water (m)	0.36
depth to bottom of borehole (m)	2.22

BHU3

Time (sec)	CH ₄ (%)	C0 ₂ (%)	0 ₂ (%)	H ₂ S(ppm)	C0(ppm)	Barometric pressure (mb)	Positive Flow I/h	Limiting Value CH_4	Limiting value CO ₂	Characteristic Situation (Wilson & Card)
30	0.20	0.70	21.3	0.00	1.00	1013	0.3	0.001	0.002	1
60	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1
90	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1
120	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1
150	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1
180	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1
210	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1
240	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1
270	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1
300	0.20	0.70	21.2	0.00	1.00	1013	0.3	0.001	0.002	1

Water	m
depth to top of water (m)	1.1
depth to bottom of borehole (m)	2.53

TETRA TECH

Monitoring Round 2 - 04/03/2021 - NOTE: No H2S filter used

Weather Fair

Ambient Conditions	Barometric Pressure	CH₄	C0 ₂	O ₂
Before Monitoring	999	0	0.1	20.9
After Monitoring	999	0	0.1	20.9

BH01

Time (sec)	CH ₄ (%)	C0 ₂ (%)	0 ₂ (%)	H₂S(ppm)	C0(ppm)	Barometric pressure (mb)	Positive Flow I/h	Limiting Value CH_4	Limiting value CO ₂	Characteristic Situation (Wilson & Card)
30	0.50	9.10	19.0	0.00	1.00	999	16.4	0.082	1.492	3
60	0.50	9.00	19.0	0.00	1.00	999	16.4	0.082	1.476	3
90	0.50	9.00	18.9	0.00	1.00	999	16.4	0.082	1.476	3
120	0.50	8.90	18.9	0.00	1.00	999	16.4	0.082	1.460	3
150	0.50	8.90	18.8	0.00	1.00	999	16.4	0.082	1.460	3
180	0.50	8.90	18.8	0.00	1.00	999	16.4	0.082	1.460	3
210	0.50	8.90	18.8	0.00	1.00	999	16.4	0.082	1.460	3
240	0.50	8.90	18.8	0.00	1.00	999	16.4	0.082	1.460	3
270	0.50	8.90	18.8	0.00	1.00	999	16.4	0.082	1.460	3
300	0.50	8.90	18.8	0.00	1.00	999	16.4	0.082	1.460	3

Water	m
depth to top of water (m)	0.03
depth to bottom of borehole (m)	4.69

BH02

Time (sec)	CH ₄ (%)	C0 ₂ (%)	0 ₂ (%)	H₂S(ppm)	C0(ppm)	Barometric pressure (mb)	Positive Flow I/h	Limiting Value CH_4	Limiting value CO ₂	Characteristic Situation (Wilson & Card)
30	0.20	3.60	20.5	0.00	2.00	999	2.7	0.005	0.097	2
60	0.20	3.70	20.3	0.00	2.00	999	2.7	0.005	0.100	2
90	0.20	3.80	20.3	0.00	2.00	999	2.7	0.005	0.103	2
120	0.20	3.80	20.3	0.00	2.00	999	2.7	0.005	0.103	2
150	0.20	3.90	20.3	0.00	2.00	999	2.7	0.005	0.105	2
180	0.20	3.90	20.3	0.00	1.00	999	2.7	0.005	0.105	2
210	0.20	3.90	20.3	0.00	1.00	999	2.7	0.005	0.105	2
240	0.20	3.90	20.3	0.00	1.00	999	2.7	0.005	0.105	2
270	0.20	3.90	20.3	0.00	1.00	999	2.7	0.005	0.105	2
300	0.20	3.90	20.3	0.00	1.00	999	2.7	0.005	0.105	2

Water	m
depth to top of water (m)	0.36
depth to bottom of borehole (m)	2.22

BH03

Time (sec)	CH ₄ (%)	C0 ₂ (%)	0 ₂ (%)	H₂S(ppm)	C0(ppm)	Barometric pressure (mb)	Positive Flow I/h	Limiting Value CH_4	Limiting value CO ₂	Characteristic Situation (Wilson & Card)
30	0.20	0.70	21.2	0.00	1.00	999	0.3	0.001	0.002	1
60	0.20	0.70	21.2	0.00	1.00	999	0.3	0.001	0.002	1
90	0.20	0.80	21.1	0.00	1.00	999	0.3	0.001	0.002	1
120	0.20	0.80	21.1	0.00	1.00	999	0.3	0.001	0.002	1
150	0.20	0.90	21.1	0.00	1.00	999	0.3	0.001	0.003	1
180	0.20	0.90	21.1	0.00	1.00	999	0.3	0.001	0.003	1
210	0.20	0.90	21.0	0.00	1.00	999	0.3	0.001	0.003	1
240	0.10	0.90	21.0	0.00	1.00	999	0.3	0.000	0.003	1
270	0.10	0.90	21.0	0.00	1.00	999	0.3	0.000	0.003	1
300	0.10	0.90	21.0	0.00	1.00	999	0.3	0.000	0.003	1

Water	m
depth to top of water (m)	1.1
depth to bottom of borehole (m)	2.53

APPENDIX H - LABORATORY TEST CERTIFICATES

Tetra Tech

Belfast BT6 9UP

1 Locksley Business Park, Montgomery Road Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Attention :	Jane Baird
Date :	25th February, 2022
Your reference :	787-B034486
Our reference :	Test Report 22/2838 Batch 1
Location :	Lifford Common
Date samples received :	21st February, 2022
Status :	Final Report
Issue :	1

Twenty three samples were received for analysis on 21st February, 2022 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

b. June

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:					
Reference:					
Location:					
Contact:					
EMT Job No:					

Tetra Tech 787-B034486 Lifford Common Jane Baird 22/2838

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	22/2838											
EMT Sample No.	1-3	10-12	16-18	22-24	34-36	43-45	55-57	58-60	61-63			
Sample ID	BH1	BH2	внз	TP1	TP3	TP4	TP6	TP7	TP7			
Depth	0.50	1.00	1.00	0.50	0.50	1.50	1.50	0.50	1.50		e attached n ations and a	
COC No / misc										 abbievi		cionyma
Containers	VJT											
Sample Date	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022			
Sample Type	Soil			,								
Batch Number	1	1	1	1	1	1	1	1	1	 LOD/LOR	Units	Method No.
Date of Receipt	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022			NO.
Arsenic [#]	15.8	6.9	8.2	4.0	5.8	-	-	7.0	-	<0.5	mg/kg	TM30/PM15
Beryllium	1.0	0.7	0.7	<0.5	<0.5	-	-	0.5	-	<0.5	mg/kg	TM30/PM15
Cadmium [#]	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	<0.1	-	<0.1	mg/kg	TM30/PM15
Chromium [#]	74.4	82.5	89.5	74.8	68.4	-	-	82.4	-	<0.5	mg/kg	TM30/PM15
Copper [#]	19	95	39	18	14	-	-	25	-	<1	mg/kg	TM30/PM15
Lead [#]	20	16	15	25	20	-	-	24	-	<5	mg/kg	TM30/PM15
Mercury [#]	0.1	< 0.1	<0.1	<0.1	<0.1	-	-	0.1	-	<0.1	mg/kg	TM30/PM15
Nickel [#]	31.1	53.7 <1	46.0 <1	26.3 <1	15.2 1	-	-	29.3 1	-	<0.7 <1	mg/kg	TM30/PM15 TM30/PM15
Selenium [#] Vanadium	1 69	48	49	34	41	-	-	47	-	<1	mg/kg mg/kg	TM30/PM15
Water Soluble Boron #	0.9	0.1	49 0.1	0.1	0.4	-	-	0.3	-	<0.1	mg/kg	TM74/PM32
Zinc [#]	73	65	80	71	38	-	-	64	-	<5	mg/kg	TM30/PM15
	10											
PAH MS												
Naphthalene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene *	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene [#]	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene [#]	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.04	< 0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	<0.04	< 0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#] PAH 16 Total	<0.04 <0.6	mg/kg	TM4/PM8 TM4/PM8									
Benzo(b)fluoranthene	<0.6	<0.6	<0.6	<0.6	<0.05	<0.05	<0.6	<0.05	<0.6	<0.6 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Benzo(k)fluoranthene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
PAH Surrogate % Recovery	95	96	95	91	97	97	94	96	95	<0	%	TM4/PM8
											,,,	
					-	-				 		

Client Name:				
Reference:				
Location:				
Contact:				
EMT Job No:				

Tetra Tech 787-B034486 Lifford Common Jane Baird 22/2838

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	22/2838									_		
EMT Sample No.	1-3	10-12	16-18	22-24	34-36	43-45	55-57	58-60	61-63			
Sample ID	BH1	BH2	BH3	TP1	TP3	TP4	TP6	TP7	TP7			
Depth	0.50	1.00	1.00	0.50	0.50	1.50	1.50	0.50	1.50	 Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	VJT											
Sample Date	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022	17/02/2022			
Sample Type	Soil											
Batch Number	1	1	1	1	1	1	1	1	1			
										 LOD/LOR	Units	Method No.
Date of Receipt	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022			
TPH CWG Aliphatics												
>C5-C6 (HS 1D AL) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS 1D AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	 <0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4	<4	<4	<4	<4	<4	<4	<4	 <4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C44 (EH_1D_AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-44 (EH+HS_1D_AL) Aromatics	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR) [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR) [#]	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC44 (EH_1D_AR)	<7	<7	<7	<7	<7	<7	<7	<7	<7	 <7	mg/kg	TM5/PM8/PM16
Total aromatics C5-44 (EH+HS_1D_AR)	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(CS-44) (EH+HS_CU_1D_Total)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM16
MTBE [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	 <5	ug/kg	TM36/PM12
Toluene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
m/p-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Total Phenols HPLC	<0.15	<0.15	<0.15	<0.15	<0.15	-	-	<0.15	-	<0.15	mg/kg	TM26/PM21B
Hexavalent Chromium [#]	<0.3	<0.3	<0.3	<0.3	<0.3	-	-	<0.3	-	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) [#]	0.0869	0.0196	0.0073	0.0072	0.0139	-	-	0.0123	-	<0.0015	g/l	TM38/PM20
Chromium III	74.4	82.5	89.5	74.8	68.4	-	-	82.4	-	<0.5	mg/kg	NONE/NONE
Free Cyanide	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	-	<0.5	mg/kg	TM89/PM45
Fraction Organic Carbon	0.020	0.001	<0.001	0.004	0.010	-	-	0.011	-	<0.001	None	TM21/PM24
рН#	4.52	6.72	6.71	6.21	6.18	-	-	5.90	-	<0.01	pH units	TM73/PM11

Client Name:	Tetra Tech
Reference:	787-B034486
Location:	Lifford Common
Contact:	Jane Baird

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
22/2838	1	BH1	0.50	3	Catherine Coles	23/02/2022	General Description (Bulk Analysis)	soil
					Catherine Coles	23/02/2022	Asbestos Fibres	NAD
					Catherine Coles	23/02/2022	Asbestos ACM	NAD
					Catherine Coles	23/02/2022	Asbestos Type	NAD
22/2838	1	BH2	1.00	12	Matthew Turner	23/02/2022	General Description (Bulk Analysis)	Soil/Stone
					Matthew Turner	23/02/2022	Asbestos Fibres	NAD
					Matthew Turner	23/02/2022	Asbestos ACM	NAD
					Matthew Turner	23/02/2022	Asbestos Type	NAD
22/2838	1	BH3	1.00	18	Catherine Coles	23/02/2022	General Description (Bulk Analysis)	soil
					Catherine Coles	23/02/2022	Asbestos Fibres	NAD
					Catherine Coles	23/02/2022	Asbestos ACM	NAD
					Catherine Coles	23/02/2022	Asbestos Type	NAD
22/2838	1	TP1	0.50	24	Kevin Hughes	23/02/2022	General Description (Bulk Analysis)	soil
					Kevin Hughes	23/02/2022	Asbestos Fibres	NAD
					Kevin Hughes	23/02/2022	Asbestos ACM	NAD
					Kevin Hughes	23/02/2022	Asbestos Type	NAD
22/2838	1	TP3	0.50	36	Kevin Hughes	23/02/2022	General Description (Bulk Analysis)	soil
					Kevin Hughes	23/02/2022	Asbestos Fibres	NAD
					Kevin Hughes	23/02/2022	Asbestos ACM	NAD
					Kevin Hughes		Asbestos Type	NAD
					Ū			
22/2838	1	TP7	0.50	60	Kevin Hughes	23/02/2022	General Description (Bulk Analysis)	soil
					Kevin Hughes	23/02/2022	Asbestos Fibres	NAD
					Kevin Hughes	23/02/2022	Asbestos ACM	NAD
					Kevin Hughes	23/02/2022	Asbestos Type	NAD
					rtormrtagnoo	LOIOLILOLL		

Client Name:	Tetra Tech
Reference:	787-B034486
Location:	Lifford Common
Contact:	Jane Baird

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason							
	No deviating sample report results for job 22/2838												

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/2838

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

[
HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 22/2838

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace CC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

EMT Job No: 22/2838

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes

Tetra Tech

Belfast BT6 9UP

1 Locksley Business Park, Montgomery Road Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Attention :	Jane Baird
Date :	10th March, 2022
Your reference :	787-B034486
Our reference :	Test Report 22/3712 Batch 1
Location :	Lifford Common
Date samples received :	7th March, 2022
Status :	Final Report
Issue :	1

Three samples were received for analysis on 7th March, 2022 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

b. June

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:							
Reference:							
Location:							
Contact:							
EMT Job No:							

Tetra Tech 787-B034486 Lifford Common Jane Baird 22/3712

Report : Liquid

 $\label{eq:liquids} \mbox{ Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

ENT JOD NO.	22/3/12				2 4/	,	- 5	_				
EMT Sample No.	1-7	8-14	15-21									
Sample ID	BH1	BH2	внз									
Depth	N/A	N/A	N/A					Disease				
COC No / misc								Please see attached notes for abbreviations and acronyms				
	VHHNNPG	V H HN N P G	VHHNNPG				 					
Sample Date												
Sample Type	Ground Water	Ground Water	Ground Water							1		
Batch Number	1	1	1					LOD/LOR	Units	Method		
Date of Receipt	07/03/2022	07/03/2022	07/03/2022							No.		
Dissolved Antimony [#]	<2	<2	<2					<2	ug/l	TM30/PM14		
Dissolved Arsenic [#]	<2.5	<2.5	<2.5					<2.5	ug/l	TM30/PM14		
Dissolved Barium [#]	61	49	45					<3	ug/l	TM30/PM14		
Dissolved Beryllium	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14		
Dissolved Boron	49	19	15					<12	ug/l	TM30/PM14		
Dissolved Cadmium [#]	< 0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14		
Total Dissolved Chromium [#]	<1.5	<1.5	5.1					<1.5	ug/l	TM30/PM14		
Dissolved Copper [#]	<7 <5	<7 <5	11 6					<7	ug/l	TM30/PM14 TM30/PM14		
Dissolved Lead [#] Dissolved Mercury [#]	<1	<1	<1					<5 <1	ug/l	TM30/PM14		
Dissolved Molybdenum [#]	<2	<2	<2					<2	ug/l ug/l	TM30/PM14		
Dissolved Nickel [#]	5	7	15					<2	ug/l	TM30/PM14		
Dissolved Selenium [#]	<3	<3	<3					<3	ug/l	TM30/PM14		
Dissolved Zinc [#]	14	8	22					<3	ug/l	TM30/PM14		
									5			
PAH MS												
Naphthalene [#]	0.4	<0.1	<0.1					<0.1	ug/l	TM4/PM30		
Acenaphthylene #	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Acenaphthene [#]	0.026	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Fluorene [#]	0.020	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Phenanthrene [#]	0.022	0.006	<0.005					<0.005	ug/l	TM4/PM30		
Anthracene #	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Fluoranthene [#]	0.009	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Pyrene [#]	0.007	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Benzo(a)anthracene [#]	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Chrysene#	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Benzo(bk)fluoranthene #	<0.008	<0.008	<0.008					<0.008	ug/l	TM4/PM30		
Benzo(a)pyrene [#]	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30		
Indeno(123cd)pyrene [#]	< 0.005	< 0.005	< 0.005					< 0.005	ug/l	TM4/PM30		
Dibenzo(ah)anthracene [#]	< 0.005	< 0.005	< 0.005					< 0.005	ug/l	TM4/PM30		
Benzo(ghi)perylene [#] PAH 16 Total [#]	< 0.005	<0.005 <0.173	< 0.005					< 0.005	ug/l	TM4/PM30		
	0.484 <0.008	<0.173	<0.173 <0.008					<0.173 <0.008	ug/l	TM4/PM30 TM4/PM30		
Benzo(b)fluoranthene Benzo(k)fluoranthene	<0.008	<0.008	<0.008					<0.008	ug/l ug/l	TM4/PM30 TM4/PM30		
PAH Surrogate % Recovery	93	87	88					<0.000	%	TM4/PM30		
<u></u>								-				
MTBE [#]	<5	<5	<5					<5	ug/l	TM36/PM12		
Benzene [#]	<5	<5	<5					<5	ug/l	TM36/PM12		
Toluene [#]	<5	<5	<5					<5	ug/l	TM36/PM12		
Ethylbenzene #	<5	<5	<5					<5	ug/l	TM36/PM12		
m/p-Xylene [#]	<5	<5	<5					<5	ug/l	TM36/PM12		
o-Xylene [#]	<5	<5	<5					<5	ug/l	TM36/PM12		

Client Name:	Tetra Tech Report : Liqu								t: Liquid					
Reference:	787-B034													
Location:	Lifford Co	mmon												
Contact:	Jane Baird						Liquids/pr	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle		
EMT Job No:	22/3712						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃				
EMT Sample No.	1-7	8-14	15-21											
• • • • • • • • • • •			10 21											
Sample ID	BH1	BH2	внз											
Depth	N/A	N/A	N/A								Please se	e attached n	otes for all	
COC No / misc												ations and a		
Containers	V H HN N P G	V H HN N P G	V H HN N P G											
Sample Date	04/03/2022	04/03/2022	04/03/2022											
Sample Type	Ground Water	Ground Water	Ground Water											
Batch Number	1	1	1								LOD/LOR	Units	Method	
Date of Receipt	07/03/2022	07/03/2022	07/03/2022								LOD/LOR	Units	No.	
TPH CWG														
Aliphatics														
>C5-C6 [#]	<10	<10	<10								<10	ug/l	TM36/PM12	
>C6-C8 [#]	<10	<10	<10								<10	ug/l	TM36/PM12	
>C8-C10#	<10	<10	<10								<10	ug/l	TM36/PM12	
>C10-C12 [#]	<5	<5	<5								<5	ug/l	TM5/PM16/PM30	
>C12-C16 [#]	<10	<10	<10								<10	ug/l	TM5/PM16/PM30	
>C16-C21 [#]	<10	<10	<10								<10	ug/l	TM5/PM16/PM30	
>C21-C35#	<10	<10	<10								<10	ug/l	TM5/PM16/PM30	
Total aliphatics C5-35 [#]	<10	<10	<10								<10	ug/l	TM5/TM36/PM12/PM16/PM30	
Aromatics	-10	-10	10								-10	ug/i		
>C5-EC7 [#]	<10	<10	<10								<10	ug/l	TM36/PM12	
		<10	<10										TM36/PM12	
>EC7-EC8 #	<10										<10	ug/l		
>EC8-EC10#	<10	<10	<10								<10	ug/l	TM36/PM12	
>EC10-EC12 [#]	<5	<5	<5								<5	ug/l	TM5/PM16/PM30	
>EC12-EC16 [#]	<10	<10	<10								<10	ug/l	TM5/PM16/PM30	
>EC16-EC21#	<10	<10	<10								<10	ug/l	TM5/PM16/PM30	
>EC21-EC35#	<10	<10	<10								<10	ug/l	TM5/PM16/PM30	
Total aromatics C5-35 #	<10	<10	<10								<10	ug/l	TM5/TM36/PM12/PM16/PM30	
Total aliphatics and aromatics(C5-35)	<10	<10	<10								<10	ug/l	TM5/TM36/PM12/PM16/PM30	
Total Phenols HPLC	<0.15	<0.15	<0.15								<0.15	mg/l	TM26/PM0	
Sulphate as SO4 [#]	93.9	61.3	13.6								<0.5	mg/l	TM38/PM0	
Chloride [#]	24.1	40.8	11.5								<0.3	mg/l	TM38/PM0	
Nitrate as NO3 [#]	3.5	0.4	5.4								<0.2	mg/l	TM38/PM0	
Nitrite as NO2 [#]	<0.02	<0.02	<0.02								<0.02	mg/l	TM38/PM0	
Total Cyanide [#]	<0.01	<0.01	<0.01								<0.01	mg/l	TM89/PM0	
Ammoniacal Nitrogen as NH3 [#]	10.88	0.11	0.05								<0.03	mg/l	TM38/PM0	
Ammoniacal Nitrogen as NH4 [#]	11.52	0.12	0.05								<0.03	mg/l	TM38/PM0	
Total Alkalinity as CaCO3 [#]	92	282	100								<1	mg/l	TM75/PM0	
Dissolved Organic Carbon [#]	7	8	4								<2	mg/l	ТМ60/РМ0	
рН *	6.48	7.01	6.78								<0.01	pH units	TM73/PM0	
		1	1		1									

Client Name:	Tetra Tech
Reference:	787-B034486
Location:	Lifford Common
Contact:	Jane Baird

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason					
	No deviating sample report results for job 22/3712										

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/3712

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

[
HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 22/3712

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	DMO	No preparation is required.	Yes			
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			

EMT Job No: 22/3712

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.	Yes			